Elusive groups of automorphisms of digraphs of small valency

Abstract A transitive permutation group is called elusive if it contains no semiregular element. We show that no group of automorphisms of a connected graph of valency at most four is elusive and determine all the elusive groups of automorphisms of connected digraphs of out-valency at most three.

[1]  Brian Alspach,et al.  Lifting Hamilton cycles of quotient graphs , 1989, Discret. Math..

[2]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[3]  Jing Xu,et al.  All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism , 2007 .

[4]  Michael Giudici,et al.  Semiregular automorphisms of edge-transitive graphs , 2013, 1306.1971.

[5]  Cheryl E. Praeger,et al.  Cyclic Matrices Over Finite Fields , 1995 .

[6]  Cheryl E. Praeger,et al.  A Characterization of a Class of Symmetric Graphs of Twice Prime Valency , 1989, Eur. J. Comb..

[7]  M. Schacher,et al.  Relative Brauer groups II. , 1981 .

[8]  Cheryl E. Praeger Highly Arc Transitive Digraphs , 1989, Eur. J. Comb..

[9]  Michael Giudici,et al.  Quasiprimitive Groups with No Fixed Point Free Elements of Prime Order , 2003 .

[10]  Peter J. Cameron,et al.  Transitive Permutation Groups Without Semiregular Subgroups , 2002 .

[11]  Klavdija Kutnar,et al.  Distance-transitive graphs admit semiregular automorphisms , 2010, Eur. J. Comb..

[12]  Norman Biggs,et al.  Three Remarkable Graphs , 1973, Canadian Journal of Mathematics.

[13]  Gabriel Verret Arc-transitive graphs of valency 8 have a semiregular automorphism , 2015, Ars Math. Contemp..

[14]  Dragan Marui On vertex symmetric digraphs , 1981 .

[15]  Edward Dobson,et al.  Semiregular automorphisms of vertex-transitive graphs of certain valencies , 2007, J. Comb. Theory, Ser. B.

[16]  Brendan D. McKay,et al.  The Transitive Graphs with at Most 26 Vertices , 1990 .

[17]  Dragan Marusic,et al.  On vertex symmetric digraphs , 1981, Discret. Math..

[18]  Dragan Marusic,et al.  Permutation Groups, Vertex-transitive Digraphs and Semiregular Automorphisms , 1998, Eur. J. Comb..