Synergies of Operations Research and Data Mining

In this contribution we identify the synergies of Operations Research and Data Mining. Synergies can be achieved by integration of optimization techniques into Data Mining and vice versa. In particular, we define three classes of synergies and illustrate each of them by examples. The classification is based on a generic description of aims, preconditions as well as process models of Operations Research and Data Mining. It serves as a framework for the assessment of approaches at the intersection of the two procedures.

[1]  Metin Turkay,et al.  A mixed-integer programming approach to multi-class data classification problem , 2006, Eur. J. Oper. Res..

[2]  Frank T. Denton,et al.  Data Mining as an Industry , 1985 .

[3]  Jon M. Kleinberg,et al.  A Microeconomic View of Data Mining , 1998, Data Mining and Knowledge Discovery.

[4]  Rakesh Nagi,et al.  Data mining in an engineering design environment: OR applications from graph matching , 2006, Comput. Oper. Res..

[5]  Jaekyung Yang,et al.  Optimization-based feature selection with adaptive instance sampling , 2006, Comput. Oper. Res..

[6]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[7]  David J. Hand,et al.  Data Mining: Statistics and More? , 1998 .

[8]  Panos M. Pardalos,et al.  Mining market data: A network approach , 2006, Comput. Oper. Res..

[9]  James Llinas,et al.  Data fusion/data mining-based architecture for condition-based maintenance , 2006 .

[10]  Sven F. Crone,et al.  The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing , 2006, Eur. J. Oper. Res..

[11]  Randolph W. Hall What's So Scientific about MS/OR? , 1985 .

[12]  William Leigh,et al.  Forecasting the New York stock exchange composite index with past price and interest rate on condition of volume spike , 2005, Expert Syst. Appl..

[13]  Gilles Venturini,et al.  A hierarchical ant based clustering algorithm and its use in three real-world applications , 2007, Eur. J. Oper. Res..

[14]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[15]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[16]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[17]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[18]  Philip S. Yu,et al.  Data Mining: How Research Meets Practical Development? , 2003, Knowledge and Information Systems.

[19]  Dylan F. Jones,et al.  A classification model based on goal programming with non-standard preference functions with application to the prediction of cinema-going behaviour , 2007, Eur. J. Oper. Res..

[20]  S. Raghavan,et al.  A divide-and-conquer local search heuristic for data visualization , 2006, Comput. Oper. Res..

[21]  Tasha R. Inniss Seasonal clustering technique for time series data , 2006, Eur. J. Oper. Res..

[22]  Evtim Peytchev,et al.  Mathematical justification of a heuristic for statistical correlation of real-life time series , 2009, Eur. J. Oper. Res..

[23]  Giovanni Giuffrida,et al.  Turning Datamining into a Management Science Tool: New Algorithms and Empirical Results.: New Algorithms and Empirical Results. , 2000 .

[24]  L. Delesie,et al.  Operations research and knowledge discovery: a data mining method applied to health care management , 2000 .

[25]  Bülent Karasözen,et al.  Optimization in Data Mining , 2006, Eur. J. Oper. Res..

[26]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[27]  Ian Witten,et al.  Data Mining , 2000 .

[28]  T. Liao,et al.  An adaptive genetic clustering method for exploratory mining of feature vector and time series data , 2006 .

[29]  Hong Tang,et al.  Data mining techniques for cancer detection using serum proteomic profiling , 2004, Artif. Intell. Medicine.

[30]  A. K. Pujari,et al.  Data Mining Techniques , 2006 .

[31]  Li-Yen Shue,et al.  Enabling customer relationship management in ISP services through mining usage patterns , 2006, Expert Syst. Appl..

[32]  Yen-Liang Chen,et al.  An overlapping cluster algorithm to provide non-exhaustive clustering , 2006, Eur. J. Oper. Res..

[33]  Parag C. Pendharkar,et al.  A data mining-constraint satisfaction optimization problem for cost effective classification , 2006, Comput. Oper. Res..

[34]  T. M. Whitin,et al.  An Optimal Final Inventory Model , 1961 .

[35]  Selwyn Piramuthu Feed-forward neural networks and feature construction with correlation information: an integrated framework , 1996 .

[36]  Andrew Kusiak,et al.  Data mining applications in engineering design, manufacturing and logistics , 2006 .

[37]  Yen-Liang Chen,et al.  A dynamic-programming algorithm for hierarchical discretization of continuous attributes , 2008, Eur. J. Oper. Res..

[38]  Jatinder N. D. Gupta,et al.  Neural networks in business: techniques and applications for the operations researcher , 2000, Comput. Oper. Res..

[39]  D. V. Gokhale,et al.  Generating synthetic data from marginal fitting for testing the efficacy of data-mining tools , 2006 .

[40]  David J. Hand,et al.  Statistics and data mining: intersecting disciplines , 1999, SKDD.

[41]  F. Sibel Salman,et al.  A mixed-integer programming approach to the clustering problem with an application in customer segmentation , 2006, Eur. J. Oper. Res..

[42]  Theodore B. Trafalis,et al.  Robust classification and regression using support vector machines , 2006, Eur. J. Oper. Res..

[43]  Abraham P. Punnen,et al.  Learning multicriteria fuzzy classification method PROAFTN from data , 2007, Comput. Oper. Res..

[44]  John A. White,et al.  An Existence Theorem for OR/MS , 1991, Oper. Res..

[45]  Fang Yuan,et al.  INCIDENT DETECTION USING SUPPORT VECTOR MACHINES , 2003 .

[46]  Lale Özbakir,et al.  MEPAR-miner: Multi-expression programming for classification rule mining , 2007, Eur. J. Oper. Res..

[47]  Emilio Carrizosa,et al.  Two-group classification via a biobjective margin maximization model , 2006, Eur. J. Oper. Res..

[48]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[49]  Parag C. Pendharkar,et al.  DEA based dimensionality reduction for classification problems satisfying strict non-satiety assumption , 2011, Eur. J. Oper. Res..

[50]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[51]  Anne-Lise Huyet,et al.  Optimization and analysis aid via data-mining for simulated production systems , 2006, Eur. J. Oper. Res..

[52]  Li Wang,et al.  Financial market forecasting using a two-step kernel learning method for the support vector regression , 2010, Ann. Oper. Res..

[53]  Mu-Chen Chen,et al.  An association-based clustering approach to order batching considering customer demand patterns , 2005 .

[54]  Balaji Padmanabhan,et al.  On the Use of Optimization for Data Mining: Theoretical Interactions and eCRM Opportunities , 2003, Manag. Sci..

[55]  Xiaonan Li,et al.  Operations research and data mining , 2008, Eur. J. Oper. Res..

[56]  Olvi L. Mangasarian,et al.  Mathematical Programming in Data Mining , 1997, Data Mining and Knowledge Discovery.

[57]  Richard S. Sutton,et al.  Reinforcement Learning , 1992, Handbook of Machine Learning.

[58]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[59]  M. Rao Cluster Analysis and Mathematical Programming , 1971 .

[60]  R. Bellman Dynamic programming. , 1957, Science.

[61]  Christos D. Tarantilis,et al.  Dynamic Fleet Management , 2007 .

[62]  Xiaonan Li,et al.  Discovering Dispatching Rules Using Data Mining , 2005, J. Sched..

[63]  Sigurdur Ólafsson Introduction to operations research and data mining , 2006, Comput. Oper. Res..

[64]  Nur Evin Özdemirel,et al.  Manufacturing lead time estimation using data mining , 2006, Eur. J. Oper. Res..

[65]  Radu Ioan Bot,et al.  The Rose-Gurewitz-Fox approach applied for patents classification , 2006, Eur. J. Oper. Res..

[66]  Karolina J. Glowacka,et al.  A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling , 2009, J. Oper. Res. Soc..

[67]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[68]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[69]  Christopher M. Bishop,et al.  Classification and regression , 1997 .

[70]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[71]  Niall M. Adams,et al.  Data Mining for Fun and Profit , 2000 .

[72]  Varghese S. Jacob,et al.  Adaptive data reduction for large-scale transaction data , 2008, Eur. J. Oper. Res..

[73]  Mu-Chen Chen,et al.  Aggregation of orders in distribution centers using data mining , 2005, Expert Syst. Appl..

[74]  Salvatore Greco,et al.  Rough Sets in Decision Making , 2009, Encyclopedia of Complexity and Systems Science.

[75]  Yong Shi,et al.  Several multi-criteria programming methods for classification , 2009, Comput. Oper. Res..

[76]  Eric Bibelnieks,et al.  Optimizing Customer Mail Streams at Fingerhut , 2001, Interfaces.

[77]  Geert Wets,et al.  Building an Association Rules Framework to Improve Product Assortment Decisions , 2004, Data Mining and Knowledge Discovery.

[78]  Salvatore Greco,et al.  Rough Set Based Decision Support , 2005 .

[79]  Gintautas Dzemyda,et al.  Optimal decisions in combining the SOM with nonlinear projection methods , 2006, Eur. J. Oper. Res..

[80]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[81]  S. Greco,et al.  Decision Rule Approach , 2005 .

[82]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[83]  Sre Bains,et al.  Intelligence as Physical Computation , 2003 .

[84]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[85]  Matthew King,et al.  Density based fuzzy C , 2006, Eur. J. Oper. Res..

[86]  Xinyu Shao,et al.  Integrating data mining and rough set for customer group-based discovery of product configuration rules , 2006 .

[87]  Chienwen Wu Applying frequent itemset mining to identify a small itemset that satisfies a large percentage of orders in a warehouse , 2006, Comput. Oper. Res..

[88]  Paul S. Bradley,et al.  Mathematical Programming for Data Mining: Formulations and Challenges , 1999, INFORMS J. Comput..

[89]  Jacob Zahavi,et al.  Using simulated annealing to optimize the feature selection problem in marketing applications , 2006, Eur. J. Oper. Res..

[90]  Andrzej Bargiela,et al.  Toward a Theory of Granular Computing for Human-Centered Information Processing , 2008, IEEE Transactions on Fuzzy Systems.

[91]  Pierre Hansen,et al.  Polynomial algorithms for nested univariate clustering , 1996, Discret. Math..

[92]  Jaekyung Yang,et al.  Intelligent Partitioning for Feature Selection , 2005, INFORMS J. Comput..

[93]  Jan M. Zytkow,et al.  Handbook of Data Mining and Knowledge Discovery , 2002 .

[94]  Jacek Zak,et al.  Technical diagnostic of a fleet of vehicles using rough set theory , 2009, Eur. J. Oper. Res..

[95]  Amit Basu,et al.  Perspectives on operations research in data and knowledge management , 1998, Eur. J. Oper. Res..

[96]  Graham Kendall,et al.  Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .

[97]  Davy Janssens,et al.  Evaluating the performance of cost-based discretization versus entropy- and error-based discretization , 2006, Comput. Oper. Res..

[98]  Yahya Fathi,et al.  Integer programming models for the q , 2007, Eur. J. Oper. Res..

[99]  Gianpaolo Ghiani,et al.  Real-Time Fleet Management At Ecourier Ltd , 2007 .

[100]  Rakesh Nagi,et al.  A Data Mining Approach to Forming Generic Bills of Materials in Support of Variant Design Activities , 2004, J. Comput. Inf. Sci. Eng..

[101]  O. Mangasarian Linear and Nonlinear Separation of Patterns by Linear Programming , 1965 .

[102]  Myong K. Jeong,et al.  Data reduction for multiple functional data with class information , 2006 .

[103]  R.-H. Lin,et al.  Potential use of FP-growth algorithm for identifying competitive suppliers in SCM , 2009, J. Oper. Res. Soc..

[104]  Tzu Liang Tseng,et al.  Applying a hybrid data-mining approach to prediction problems: a case of preferred suppliers prediction , 2006 .

[105]  Mihajlo D. Mesarovic,et al.  Abstract Systems Theory , 1989 .