Low-power Viterbi decoder for CDMA mobile terminals

An efficient state-sequential very large scale integration (VLSI) architecture and low-power design methodologies ranging from the system-level to the layout-level are presented for a large-constraint-length Viterbi decoder for code division multiple access (CDMA) digital cellular/personal communication services (PCS) applications. The low-power design approaches are also applicable to many other systems and algorithms. VLSI implementation issues and prototype fabrication results for a state-sequential Viterbi decoder for convolutional codes of rate 1/2 and constraint-length 9 are also described. The chip's core, consisting of approximately 65 k transistors, occupies 1.9 mm by 3.4 mm in a 0.8-/spl mu/m triple-layer-metal n-well CMOS technology. The chip's measured total power dissipation is 0.24 mW at a 14.4 kb/s data-rate with 0.9216 MHz clocking at a supply voltage of 1.65 V. The Viterbi decoder presented here is the lowest power and smallest area core in its class, to the best of our knowledge.

[1]  C. C. Roe,et al.  MOS INTEGRATED CIRCUITS. , 1966 .

[2]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[3]  J. Omura,et al.  On the Viterbi decoding algorithm , 1969, IEEE Trans. Inf. Theory.

[4]  Andrew J. Viterbi,et al.  Convolutional Codes and Their Performance in Communication Systems , 1971 .

[5]  J. Heller,et al.  Viterbi Decoding for Satellite and Space Communication , 1971 .

[6]  Harold S. Stone,et al.  A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations , 1973, IEEE Transactions on Computers.

[7]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[8]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[9]  Andrew J. Viterbi,et al.  Principles of Digital Communication and Coding , 1979 .

[10]  C. Rader Memory Management in a Viterbi Decoder , 1981, IEEE Trans. Commun..

[11]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[12]  Resve Saleh,et al.  Analysis and Design of Digital Integrated Circuits , 1983 .

[13]  Charles E. Leiserson,et al.  Optimizing Synchronous Circuitry by Retiming (Preliminary Version) , 1983 .

[14]  Daniel W. Dobberpuhl,et al.  The design and analysis of VLSI circuits , 1985 .

[15]  Peter J. McLane,et al.  Implementation of a Viterbi Processor for a Digital Communications System with a Time-Dispersive Channel , 1986, IEEE J. Sel. Areas Commun..

[16]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[17]  Thomas Kailath,et al.  Locally connected VLSI architectures for the Viterbi algorithm , 1988, IEEE J. Sel. Areas Commun..

[18]  Kung Yao,et al.  Systolic array processing of the Viterbi algorithm , 1989, IEEE Trans. Inf. Theory.

[19]  Andries P. Hekstra,et al.  An alternative to metric rescaling in Viterbi decoders , 1989, IEEE Trans. Commun..

[20]  Andrew J. Viterbi,et al.  On the capacity of a cellular CDMA system , 1991 .

[21]  Jens Sparsø,et al.  An area-efficient topology for VLSI implementation of Viterbi decoders and other shuffle-exchange type structures , 1991 .

[22]  N. Demassieux,et al.  A versatile architecture for VLSI implementation of the Viterbi algorithm , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[23]  John B. Anderson,et al.  Source and Channel Coding , 1991 .

[24]  John B. Anderson,et al.  Source and Channel Coding: An Algorithmic Approach , 1991 .

[25]  H. Meyr,et al.  High-speed parallel Viterbi decoding: algorithm and VLSI-architecture , 1991, IEEE Communications Magazine.

[26]  Eiji Takeda,et al.  An experimental 1.5-V 64-Mb DRAM , 1991 .

[27]  Teresa H. Meng,et al.  A 140-Mb/s, 32-state, radix-4 Viterbi decoder , 1992 .

[28]  P. M. Chau,et al.  Scaling And Folding The Viterbi Algorithm Trellis , 1992, Workshop on VLSI Signal Processing.

[29]  J. Hindering,et al.  CDMA Mobile Station Modem ASIC , 1992, 1992 Proceedings of the IEEE Custom Integrated Circuits Conference.

[30]  Roberto Padovani,et al.  The CDMA Digital Cellular System An ASIC Overview , 1992, 1992 Proceedings of the IEEE Custom Integrated Circuits Conference.

[31]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[32]  R. Padovani,et al.  Implications of mobile cellular CDMA , 1992, IEEE Communications Magazine.

[33]  Teresa H. Meng,et al.  A unified approach to the Viterbi algorithm state metric update for shift register processes , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  R. Kerr The CDMA digital cellular system-an ASIC overview , 1992, [1992 Proceedings] The Third IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[35]  P. Glenn Gulak,et al.  A multiprocessor architecture for Viterbi decoders with linear speedup , 1993, IEEE Trans. Signal Process..

[36]  H. Samueli,et al.  A 700-MHz 24-b pipelined accumulator in 1.2- mu m CMOS for application as a numerically controlled oscillator , 1993 .

[37]  Paul H. Siegel,et al.  Area-efficient architectures for the Viterbi algorithm. I. Theory , 1993, IEEE Trans. Commun..

[38]  Masato Mizoguchi,et al.  Very low power consumption Viterbi decoder LSIC employing the SST (scarce state transition) scheme for multimedia mobile communications , 1994 .

[39]  Miodrag Potkonjak,et al.  Optimizing power using transformations , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[40]  Kung Yao,et al.  The iterative collapse algorithm: a novel approach for the design of long constraint length Viterbi decoders. II , 1995, IEEE Trans. Commun..

[41]  A. Viterbi CDMA: Principles of Spread Spectrum Communication , 1995 .

[42]  H.-L. Lou,et al.  Implementing the Viterbi algorithm , 1995, IEEE Signal Process. Mag..

[43]  H. Lou Viterbi decoder design for the IS-95 CDMA forward link , 1996, Proceedings of Vehicular Technology Conference - VTC.