Causal Transport in Discrete Time and Applications

Loosely speaking, causal transport plans are a relaxation of adapted processes in the same sense as Kantorovich transport plans extend Monge-type transport maps. The corresponding causal version of the transport problem has recently been introduced by Lassalle. Working in a discrete time setup, we establish a dynamic programming principle that links the causal transport problem to the transport problem for general costs recently considered by Gozlan et al. Based on this recursive principle, we give conditions under which the celebrated Knothe-Rosenblatt rearrangement can be viewed as a causal analogue to the Brenier's map. Moreover, these considerations provide transport-information inequalities for the nested distance between stochastic processes pioneered by Pflug and Pichler, and so serve to gauge the discrepancy between stochastic programs driven by different noise distributions.

[1]  Prasad Tetali,et al.  Characterization of a class of weak transport-entropy inequalities on the line , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[2]  S. Varadhan Large Deviations and Applications , 1984 .

[3]  A. Guillin,et al.  Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.

[4]  Yan Dolinsky,et al.  Martingale Optimal Transport and Robust Hedging in Continuous Time , 2013 .

[5]  David Hobson,et al.  ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .

[6]  Данила Андреевич Заев,et al.  О задаче Монжа - Канторовича с дополнительными линейными ограничениями@@@On the Monge - Kantorovich Problem with Additional Linear Constraints , 2015 .

[7]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[8]  M. K rn,et al.  Stochastic Optimal Control , 1988 .

[9]  Toshio Mikami A Characterization of the Knothe-Rosenblatt Processes by a Convergence Result , 2012, SIAM J. Control. Optim..

[10]  Guillaume Carlier,et al.  From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..

[11]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[12]  Ludger Riischendorf The Wasserstein distance and approximation theorems , 1985 .

[13]  Georg Ch. Pflug,et al.  A Distance For Multistage Stochastic Optimization Models , 2012, SIAM J. Optim..

[14]  Georg Ch. Pflug,et al.  Dynamic generation of scenario trees , 2015, Computational Optimization and Applications.

[15]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[16]  H. Knothe Contributions to the theory of convex bodies. , 1957 .

[17]  Peter Kall,et al.  Stochastic Programming , 1995 .

[18]  Thomas G. Kurtz,et al.  The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities , 2007 .

[19]  Shinzo Watanabe,et al.  On the uniqueness of solutions of stochastic difierential equations , 1971 .

[20]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[21]  A. Üstünel,et al.  Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .

[22]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[23]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[24]  R. Lassalle,et al.  Causal transport plans and their Monge–Kantorovich problems , 2013, 1303.6925.

[25]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.

[26]  Paul-Marie Samson,et al.  Kantorovich duality for general transport costs and applications , 2014, 1412.7480.

[27]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[28]  Nizar Touzi,et al.  A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options , 2013, 1401.3921.

[29]  W. Schachermayer,et al.  Duality for Borel measurable cost functions , 2008, 0807.1468.

[30]  Georg Ch. Pflug,et al.  Version-Independence and Nested Distributions in Multistage Stochastic Optimization , 2009, SIAM J. Optim..

[31]  Claus Griessler,et al.  An optimality principle with applications in optimal transport , 2014, 1404.7054.

[32]  Phil Howlett,et al.  Stochastic Optimal Control of a Solar Car , 2001 .

[33]  A. Ruszczynski Stochastic Programming Models , 2003 .

[34]  C. Villani Topics in Optimal Transportation , 2003 .