Causal Transport in Discrete Time and Applications
暂无分享,去创建一个
Yiqing Lin | Mathias Beiglböck | Julio Backhoff | Anastasiia Zalashko | M. Beiglböck | Yiqing Lin | Anastasiia Zalashko | Julio Backhoff
[1] Prasad Tetali,et al. Characterization of a class of weak transport-entropy inequalities on the line , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[2] S. Varadhan. Large Deviations and Applications , 1984 .
[3] A. Guillin,et al. Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.
[4] Yan Dolinsky,et al. Martingale Optimal Transport and Robust Hedging in Continuous Time , 2013 .
[5] David Hobson,et al. ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .
[6] Данила Андреевич Заев,et al. О задаче Монжа - Канторовича с дополнительными линейными ограничениями@@@On the Monge - Kantorovich Problem with Additional Linear Constraints , 2015 .
[7] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[8] M. K rn,et al. Stochastic Optimal Control , 1988 .
[9] Toshio Mikami. A Characterization of the Knothe-Rosenblatt Processes by a Convergence Result , 2012, SIAM J. Control. Optim..
[10] Guillaume Carlier,et al. From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..
[11] Dimitri P. Bertsekas,et al. Stochastic optimal control : the discrete time case , 2007 .
[12] Ludger Riischendorf. The Wasserstein distance and approximation theorems , 1985 .
[13] Georg Ch. Pflug,et al. A Distance For Multistage Stochastic Optimization Models , 2012, SIAM J. Optim..
[14] Georg Ch. Pflug,et al. Dynamic generation of scenario trees , 2015, Computational Optimization and Applications.
[15] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .
[16] H. Knothe. Contributions to the theory of convex bodies. , 1957 .
[17] Peter Kall,et al. Stochastic Programming , 1995 .
[18] Thomas G. Kurtz,et al. The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities , 2007 .
[19] Shinzo Watanabe,et al. On the uniqueness of solutions of stochastic difierential equations , 1971 .
[20] Kim C. Border,et al. Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .
[21] A. Üstünel,et al. Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .
[22] Filippo Santambrogio,et al. Optimal Transport for Applied Mathematicians , 2015 .
[23] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[24] R. Lassalle,et al. Causal transport plans and their Monge–Kantorovich problems , 2013, 1303.6925.
[25] H. Soner,et al. Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.
[26] Paul-Marie Samson,et al. Kantorovich duality for general transport costs and applications , 2014, 1412.7480.
[27] Mathias Beiglböck,et al. Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.
[28] Nizar Touzi,et al. A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options , 2013, 1401.3921.
[29] W. Schachermayer,et al. Duality for Borel measurable cost functions , 2008, 0807.1468.
[30] Georg Ch. Pflug,et al. Version-Independence and Nested Distributions in Multistage Stochastic Optimization , 2009, SIAM J. Optim..
[31] Claus Griessler,et al. An optimality principle with applications in optimal transport , 2014, 1404.7054.
[32] Phil Howlett,et al. Stochastic Optimal Control of a Solar Car , 2001 .
[33] A. Ruszczynski. Stochastic Programming Models , 2003 .
[34] C. Villani. Topics in Optimal Transportation , 2003 .