This paper presents the latest design features and estimated costs of a 5000 MWh/1000 MW Superconducting Magnetic Energy Storage (SMES) plant. SMES is proposed as a commercially viable technology for electric utility load leveling. The primary advantage of SMES over other electrical energy storage technologies is its high net roundtrip efficiency. Other features include rapid availability and low maintenance and operating costs. Economic comparisons are made with other energy storage options and with gas turbines. In a diurnal load leveling application, a superconducting coil can be charged from the utility grid during off-peak hours. The ac grid is connected to the dc magnetic coil through a power conversion system that includes an inverter/rectifier. Once charged, the superconducting coil conducts current, which supports an electromagnetic field, with virtually no losses. During hours of peak load, the stored energy is discharged to the grid by reversing the charging process. The principle of operation of a SMES unit is shown in Fig. 1. For operation in the superconducting mode, the coil is maintained at extremely low temperature by immersion in a bath of liquid helium.