A Hierarchical Gravity Model with Spatial Correlation: Mathematical Formulation and Parameter Estimation

This study presents a hierarchical trip distribution gravity model that can accommodate various spatial correlation structures. It is formulated on the basis of the solution to an equivalent optimization problem, and its parameters are estimated using a sequential maximum likelihood procedure. We conclude that accounting for spatial correlation through a hierarchical structure incorporated into gravity-type trip distribution models significantly increases their explanatory and predictive powers and improves the results they generate for use in transportation system planning processes.

[1]  Suzanne P. Evans,et al.  DERIVATION AND ANALYSIS OF SOME MODELS FOR COMBINING TRIP DISTRIBUTION AND ASSIGNMENT , 1976 .

[2]  Peter Nijkamp,et al.  Alonso's General Theory of Movement , 2000 .

[3]  H R Kirby,et al.  Trip-Distribution Calculations and Sampling Error: Some Theoretical Aspects , 1978 .

[4]  P Congdon,et al.  Aspects of general linear modelling of migration. , 1992, The Statistician : journal of the Institute of Statisticians.

[5]  R. Winkelmann,et al.  RECENT DEVELOPMENTS IN COUNT DATA MODELLING: THEORY AND APPLICATION , 1995 .

[6]  A. Anas THE ESTIMATION OF MULTINOMIAL LOGIT MODELS OF JOINT LOCATION AND TRAVEL MODE CHOICE FROM AGGREGATED DATA , 1981 .

[7]  T. Abrahamsson,et al.  Formulation and Estimation of Combined Network Equilibrium Models with Applications to Stockholm , 1999, Transp. Sci..

[8]  Ashish Sen,et al.  MAXIMUM LIKELIHOOD ESTIMATION OF GRAVITY MODEL PARAMETERS , 1986 .

[9]  Morton Schneider,et al.  GRAVITY MODELS AND TRIP DISTRIBUTION THEORY , 2005 .

[10]  Morton E. O'Kelly,et al.  Spatial Interaction Models:Formulations and Applications , 1988 .

[11]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[12]  B. Y. Own PAPERS, REGIONAL SCIENCE ASSOCIATION , 2005 .

[13]  C. Fisk Some developments in equilibrium traffic assignment , 1980 .

[14]  Inge Thorsen,et al.  Empirical Evaluation of Alternative Model Specifications to Predict Commuting Flows , 1998 .

[15]  Daniel C. Knudsen,et al.  Matrix Comparison, Goodness-of-Fit, and Spatial Interaction Modeling , 1986 .

[16]  Pingzhao Hu,et al.  An empirical test of the competing destinations model , 2002, J. Geogr. Syst..

[17]  Angel Ibeas,et al.  Gravity model estimation with proxy variables and the impact of endogeneity on transportation planning , 2009 .

[18]  J. E. Fernández,et al.  Combined Models with Hierarchical Demand Choices: A Multi‐Objective Entropy Optimization Approach , 2008 .

[19]  S. Stouffer Intervening opportunities: a theory relating mobility and distance , 1940 .

[20]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[21]  Shu-Cherng Fang,et al.  Linearly-Constrained Entropy Maximization Problem with Quadratic Cost and Its Applications to Transportation Planning Problems , 1995, Transp. Sci..

[22]  J. Thill,et al.  Spatial interaction modelling , 2003 .

[23]  A. Sen,et al.  PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATES OF GRAVITY MODEL PARAMETERS , 1991 .

[24]  Joaquin De Cea,et al.  Solving network equilibrium problems on multimodal urban transportation networks with multiple user classes , 2005 .

[25]  A. Ullah,et al.  Handbook of Applied Economic Statistics , 2000 .

[26]  M. Aitkin,et al.  A method of fitting the gravity model based on the Poisson distribution. , 1982, Journal of regional science.

[27]  Peter Nijkamp,et al.  Spatial Interaction Modelling , 2003 .

[28]  A. Fotheringham,et al.  Modelling Hierarchical Destination Choice , 1986 .

[29]  A S Fotheringham,et al.  A New Set of Spatial-Interaction Models: The Theory of Competing Destinations † , 1983 .

[30]  C. B. Mcguire,et al.  Studies in the Economics of Transportation , 1958 .

[31]  D. Hensher Sequential and Full Information Maximum Likelihood Estimation of a Nested Logit Model , 1986 .