A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations

We study stochastic differential equations (SDEs) whose drift and diffusion coefficients are path-dependent and controlled. We construct a value process on the canonical path space, considered simultaneously under a family of singular measures, rather than the usual family of processes indexed by the controls. This value process is characterized by a second order backward SDE, which can be seen as a non-Markovian analogue of the Hamilton-Jacobi Bellman partial differential equation. Moreover, our value process yields a generalization of the $G$-expectation to the context of SDEs.

[1]  H. Soner,et al.  Quasi-sure Stochastic Analysis through Aggregation , 2010, 1003.4431.

[2]  S. Peng G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.

[3]  MaJin,et al.  Pathwise Stochastic Control Problems and Stochastic HJB Equations , 2007 .

[4]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[5]  S. Peng Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation , 2006, math/0601699.

[6]  Marcel Nutz,et al.  Random G-expectations. , 2010, 1009.2168.

[7]  Luciano Tubaro,et al.  Fully nonlinear stochastic partial differential equations , 1996 .

[8]  Shige Peng,et al.  Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims , 2004 .

[9]  Srinivasa Varadhan,et al.  Stochastic analysis and applications , 2002 .

[10]  Shaolin Ji,et al.  Ambiguous volatility, possibility and utility in continuous time , 2011, 1103.1652.

[11]  Marcel Nutz,et al.  The Bellman equation for power utility maximization with semimartingales , 2009, ArXiv.

[12]  D. Sworder Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[13]  Rainer Buckdahn,et al.  Stochastic viscositysolutions for nonlinear stochastic partial di#erential equations. Part II , 2001 .

[14]  P. Souganidis,et al.  Fully nonlinear stochastic partial differential equations: non-smooth equations and applications , 1998 .

[15]  Marcel Nutz,et al.  Superhedging and Dynamic Risk Measures Under Volatility Uncertainty , 2010, SIAM J. Control. Optim..

[16]  H. Soner,et al.  Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.

[17]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[18]  K. Bichteler,et al.  Stochastic Integration and $L^p$-Theory of Semimartingales , 1981 .

[19]  P. Imkeller,et al.  Utility maximization in incomplete markets , 2005, math/0508448.

[20]  L. Denis,et al.  A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.

[21]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[22]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[23]  R. Handel,et al.  Constructing Sublinear Expectations on Path Space , 2012, 1205.2415.

[24]  H. Soner,et al.  Dual Formulation of Second Order Target Problems , 2010, 1003.6050.

[25]  Jin Ma,et al.  Pathwise Stochastic Control Problems and Stochastic HJB Equations , 2007, SIAM J. Control. Optim..

[26]  M. Mandelkern,et al.  On the uniform continuity of Tietze extensions , 1990 .

[27]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[28]  Shige Peng,et al.  Stochastic Hamilton-Jacobi-Bellman equations , 1992 .

[29]  Shige Peng,et al.  Note on Viscosity Solution of Path-Dependent PDE and G-Martingales , 2011, 1106.1144.

[30]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[31]  Shige Peng,et al.  Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.

[32]  M. Smorodinsky,et al.  Simple examples of non-generating Girsanov processes , 1997 .

[33]  Marcel Nutz,et al.  Measurability of semimartingale characteristics with respect to the probability law , 2013, 1312.1624.

[34]  Andrew G. Glen,et al.  APPL , 2001 .

[35]  N. Karoui Les Aspects Probabilistes Du Controle Stochastique , 1981 .