暂无分享,去创建一个
[1] H. Soner,et al. Quasi-sure Stochastic Analysis through Aggregation , 2010, 1003.4431.
[2] S. Peng. G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.
[3] MaJin,et al. Pathwise Stochastic Control Problems and Stochastic HJB Equations , 2007 .
[4] Robert J. Elliott,et al. Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.
[5] S. Peng. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation , 2006, math/0601699.
[6] Marcel Nutz,et al. Random G-expectations. , 2010, 1009.2168.
[7] Luciano Tubaro,et al. Fully nonlinear stochastic partial differential equations , 1996 .
[8] Shige Peng,et al. Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims , 2004 .
[9] Srinivasa Varadhan,et al. Stochastic analysis and applications , 2002 .
[10] Shaolin Ji,et al. Ambiguous volatility, possibility and utility in continuous time , 2011, 1103.1652.
[11] Marcel Nutz,et al. The Bellman equation for power utility maximization with semimartingales , 2009, ArXiv.
[12] D. Sworder. Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.
[13] Rainer Buckdahn,et al. Stochastic viscositysolutions for nonlinear stochastic partial di#erential equations. Part II , 2001 .
[14] P. Souganidis,et al. Fully nonlinear stochastic partial differential equations: non-smooth equations and applications , 1998 .
[15] Marcel Nutz,et al. Superhedging and Dynamic Risk Measures Under Volatility Uncertainty , 2010, SIAM J. Control. Optim..
[16] H. Soner,et al. Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.
[17] S. Peng,et al. Adapted solution of a backward stochastic differential equation , 1990 .
[18] K. Bichteler,et al. Stochastic Integration and $L^p$-Theory of Semimartingales , 1981 .
[19] P. Imkeller,et al. Utility maximization in incomplete markets , 2005, math/0508448.
[20] L. Denis,et al. A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.
[21] Nizar Touzi,et al. Wellposedness of second order backward SDEs , 2010, 1003.6053.
[22] W. Fleming,et al. Controlled Markov processes and viscosity solutions , 1992 .
[23] R. Handel,et al. Constructing Sublinear Expectations on Path Space , 2012, 1205.2415.
[24] H. Soner,et al. Dual Formulation of Second Order Target Problems , 2010, 1003.6050.
[25] Jin Ma,et al. Pathwise Stochastic Control Problems and Stochastic HJB Equations , 2007, SIAM J. Control. Optim..
[26] M. Mandelkern,et al. On the uniform continuity of Tietze extensions , 1990 .
[27] D. W. Stroock,et al. Multidimensional Diffusion Processes , 1979 .
[28] Shige Peng,et al. Stochastic Hamilton-Jacobi-Bellman equations , 1992 .
[29] Shige Peng,et al. Note on Viscosity Solution of Path-Dependent PDE and G-Martingales , 2011, 1106.1144.
[30] P. Meyer,et al. Probabilities and potential C , 1978 .
[31] Shige Peng,et al. Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.
[32] M. Smorodinsky,et al. Simple examples of non-generating Girsanov processes , 1997 .
[33] Marcel Nutz,et al. Measurability of semimartingale characteristics with respect to the probability law , 2013, 1312.1624.
[34] Andrew G. Glen,et al. APPL , 2001 .
[35] N. Karoui. Les Aspects Probabilistes Du Controle Stochastique , 1981 .