Quantum entanglement for helium atom in the Debye plasmas

In the present work, we present an investigation on quantum entanglement of the two-electron helium atom immersed in weakly coupled Debye plasmas, modeled by the Debye-Huckel, or screened Coulomb, potential to mimic the interaction between two charged particles inside the plasma. Quantum entanglement is related to correlation effects in a multi-particle system. In a bipartite system, a measurement made on one of the two entangled particles affects the outcome of the other particle, even if such two particles are far apart. Employing wave functions constructed with configuration interaction B-spline basis, we have quantified von Neumann entropy and linear entropy for a series of He 1,3Se and 1,3Po states in plasma-embedded helium atom.

[1]  S. Kar Dynamic dipole polarizability of the helium atom with Debye-Hückel potentials , 2012 .

[2]  Chien-Hao Lin,et al.  Quantification of Entanglement Entropy in Helium by the Schmidt–Slater Decomposition Method , 2014, ArXiv.

[3]  Young-Dae Jung,et al.  Quantum effects on the entanglement fidelity in elastic scatterings in strongly coupled semiclassical plasmas , 2008 .

[4]  O. Osenda,et al.  Scaling of the von Neumann entropy in a two-electron system near the ionization threshold , 2007 .

[5]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  K. Ratnavelu,et al.  Doubly-excited 1,3De resonance states of two-electron positive ions Li+ and Be2+ in Debye plasmas , 2014 .

[7]  Y. K. Ho,et al.  An investigation of resonances in e+-H scattering embedded in Debye plasma , 2014 .

[8]  J. G. Wang,et al.  Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction , 2014 .

[9]  A. Loeb,et al.  Cores in dwarf galaxies from dark matter with a Yukawa potential. , 2010, Physical review letters.

[10]  Entanglement entropy in critical phenomena and analog models of quantum gravity , 2006, hep-th/0602134.

[11]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[12]  Young-Dae Jung,et al.  Influence of the ion wake-field on the collisional entanglement fidelity in complex dusty plasmas , 2012 .

[13]  Y. K. Ho,et al.  Doubly excited P-wave resonance states of H− in Debye plasmas , 2013 .

[14]  P. Mukherjee,et al.  Hyperpolarizability of two electron atoms under spherically confined Debye plasma , 2012 .

[15]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[16]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[17]  J. S. Dehesa,et al.  The relationship between entanglement, energy and level degeneracy in two-electron systems , 2012, 1209.5299.

[18]  M. Rosenberg Ion- and dust-acoustic instabilities in dusty plasmas , 1993 .

[19]  Quantum entanglement for two electrons in the excited states of helium-like systems , 2013, 1307.5532.

[20]  Quantification of Linear Entropy for Quantum Entanglement in He, H− and Ps− Ions Using Highly-Correlated Hylleraas Functions , 2013, 1304.1741.

[21]  Y. K. Ho,et al.  One- and two-photon ionization of hydrogen atom embedded in Debye plasmas , 2013 .

[22]  Y. K. Ho,et al.  Hydrogen atoms in Debye plasma environments , 2009 .

[23]  Giuliano Benenti,et al.  Entanglement in helium , 2012, 1204.6667.

[24]  S. Chattopadhyay,et al.  Spectral lines behavior of Be I and Na I isoelectronic sequence in Debye plasma environment , 2012 .

[25]  P. Kościk,et al.  Entanglement Entropies in the Ground States of Helium-Like Atoms , 2014, 1404.4862.

[26]  A. Plastino,et al.  Quantum entanglement in helium , 2012 .

[27]  Y. K. Ho,et al.  Calculation of von Neumann entropy for hydrogen and positronium negative ions , 2014 .

[28]  Y. K. Ho,et al.  Doubly-excited 2p2 3Pe state of the hydrogen negative ion in Debye plasmas , 2014 .

[29]  Y. K. Ho,et al.  Spatial entanglement in two-electron atomic systems , 2013 .

[30]  J. S. Dehesa,et al.  Corrigendum: Quantum entanglement in helium , 2012 .

[31]  Young-Dae Jung,et al.  Collective and Screening Effects on Entanglement Fidelity in Elastic Collisions in Nonideal Plasmas , 2005 .

[32]  T. Hofer On the basis set convergence of electron–electron entanglement measures: helium-like systems , 2013, Front. Chem..

[33]  Young-Dae Jung,et al.  Friedel Screening Effects on the Entanglement Fidelity for Elastic Collisions in Degenerate Quantum Plasmas , 2011 .

[34]  Gordon W. F. Drake,et al.  High Precision Calculations for Helium , 2006 .

[35]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[36]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[37]  Young-Dae Jung Plasmon effects on the entanglement fidelity for elastic collisions in hot quantum plasmas , 2011 .

[38]  Young-Dae Jung,et al.  Electron-exchange and quantum screening effects on the collisional entanglement fidelity in degenerate quantum plasmas , 2014 .

[39]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[40]  A. Sudbery,et al.  Entanglement and density-functional theory: Testing approximations on Hooke’s atom , 2007, 0712.3819.

[41]  Y. K. Ho,et al.  Bound states of helium atom in dense plasmas , 2006 .

[42]  Y. Qi,et al.  Dynamic processes and polarizability of sodium atom in Debye plasmas , 2014 .

[43]  M. Pandey,et al.  Investigation of charge transfer and ionization in He-like systems (Li+, Be2+, B3+, C4+, N5+, O6+)-hydrogen atom collisions in Debye plasmas , 2013 .

[44]  Young-Dae Jung,et al.  Nonthermal effects on the entanglement fidelity for elastic scatterings in Lorentzian plasmas , 2008 .