The mechanical behavior of nanoscale metallic multilayers: A survey

The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

[1]  P. Huang,et al.  Grain size dependent strain rate sensitivity in nanocrystalline body-centered cubic metal thin films , 2014 .

[2]  Amit Misra,et al.  Deformation mechanism maps for polycrystalline metallic multiplayers , 1999 .

[3]  L. Schultz,et al.  Mechanical properties of Cu‐based Micro‐ and Macrocomposites , 2002 .

[4]  F. Zeng,et al.  Microstructure and mechanical properties of nanoscale Cu/Ni multilayers , 2010 .

[5]  R. Hoagland,et al.  Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale , 2009 .

[6]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[7]  Q. Jia,et al.  Formation Mechanisms of High-density Growth Twins in Aluminum with High Stacking-Fault Energy , 2013 .

[8]  Daryl C. Chrzan,et al.  SCALING THEORY OF THE HALL-PETCH RELATION FOR MULTILAYERS , 1998 .

[9]  T. Foecke,et al.  Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu-Ni thin films , 2002 .

[10]  M. Nastasi,et al.  Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films , 2004 .

[11]  I. Beyerlein,et al.  High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces , 2013, Nature Communications.

[12]  Amit Misra,et al.  Damage Mechanisms in Nanolayered Metallic Composites , 2003 .

[13]  Amit Misra,et al.  Ultrahigh Strength and Ductility of Cu-Nb Nanolayered Composites , 2009 .

[14]  Leonard C. Feldman,et al.  Electronic thin film science : for electrical engineers and materials scientists , 1996 .

[15]  Hwaiyu Geng,et al.  Semiconductor Manufacturing Handbook , 2005 .

[16]  Amit Misra,et al.  Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness , 2012 .

[17]  A. Misra,et al.  Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers , 2010 .

[18]  Amit Misra,et al.  Mechanism for shear banding in nanolayered composites , 2010 .

[19]  F. Zeng,et al.  Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers , 2007 .

[20]  S. Suresh,et al.  Strain rate sensitivity of Cu with nanoscale twins , 2006 .

[21]  S. Qadri,et al.  Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films , 1994 .

[22]  Amit Misra,et al.  Work hardening in rolled nanolayered metallic composites , 2005 .

[23]  Tian Jian Lu,et al.  Strain rate sensitivity of unequal grained nano-multilayers , 2011 .

[24]  R. Hoagland,et al.  Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation , 2009 .

[25]  F. Zeng,et al.  Room temperature nanoindentation creep of nanoscale Ag/Fe multilayers , 2010 .

[26]  A. Rollett,et al.  Paramagnetic Meissner Effect and AC Magnetization in Roll-Bonded Cu–Nb Layered Composites , 2010 .

[27]  Á. Cziráki,et al.  Preparation and Magnetoresistance Characteristics of Electrodeposited Ni‐Cu Alloys and Ni‐Cu/Cu Multilayers , 2000 .

[28]  J. H. Chen,et al.  Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers , 2012 .

[29]  Cheng Yan,et al.  Evaluation of plastic deformation ability of Cu/Ni/W metallic multilayers , 2013 .

[30]  Xinghang Zhang,et al.  Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers , 2013 .

[31]  Fei Zeng,et al.  The influence of grain morphology on indentation deformation characteristic of metallic nano-multilayers , 2009 .

[32]  S. Hong,et al.  Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers , 2007 .

[33]  Jian Wang,et al.  Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces , 2012 .

[34]  Amit Misra,et al.  Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites , 2008 .

[35]  I. Beyerlein,et al.  Interface-dependent nucleation in nanostructured layered composites , 2013 .

[36]  T. Germann,et al.  Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces , 2011 .

[37]  C. Henager,et al.  Slip resistance of interfaces and the strength of metallic multilayer composites , 2004 .

[38]  F. Zeng,et al.  Microstructure and nanoindentation investigation of magnetron sputtering Ag/Co multilayers , 2006 .

[39]  Ping Huang,et al.  Shear banding behavior in nanoscale Al/W multilayers , 2013 .

[40]  J. Hirth,et al.  Plastic flow stability of nanotwinned Cu foils , 2010 .

[41]  S. Barnett,et al.  Structure and Strength of Multilayers , 1999 .

[42]  J. Embury,et al.  On dislocation storage and the mechanical response of fine scale microstructures , 1994 .

[43]  M. Demkowicz,et al.  Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. , 2008, Physical review letters.

[44]  Gang Liu,et al.  Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus , 2012 .

[45]  J. Hirth,et al.  Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces , 2008 .

[46]  R. Hoagland,et al.  Thermal stability of self-supported nanolayered Cu/Nb films , 2004 .

[47]  A. Misra,et al.  Strain hardening in nanolayered thin films , 2014 .

[48]  Amit Misra,et al.  Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites , 1998 .

[49]  Guang-Ping Zhang,et al.  Investigation of deformation instability of Au/Cu multilayers by indentation , 2010 .

[50]  Haiyan Wang,et al.  Mechanical properties of highly textured Cu/Ni multilayers , 2011 .

[51]  I. Beyerlein,et al.  Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites , 2014, Journal of Materials Science.

[52]  R. Asaro,et al.  Are some nanotwinned fcc metals optimal for strength, ductility and grain stability? , 2009 .

[53]  S. Lehoczky,et al.  Strength enhancement in thin‐layered Al‐Cu laminates , 1978 .

[54]  D. M. Tench,et al.  Tensile Properties of Nanostructured Ni‐Cu Multilayered Materials Prepared by Electrodeposition , 1991 .

[55]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[56]  Y. Liu,et al.  Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers , 2006 .

[57]  B. Shen,et al.  Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying , 2000 .

[58]  J. Hirth,et al.  Atomistic modeling of the interaction of glide dislocations with “weak” interfaces , 2008 .

[59]  Amit Misra,et al.  Tensile behavior of 40 nm Cu/Nb nanoscale multilayers , 2008 .

[60]  Xuan Zhang,et al.  Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars , 2012 .

[61]  A. Misra,et al.  Superior thermal stability of coherent twin boundaries in nanotwinned metals , 2012 .

[62]  T. Foecke,et al.  Deformation and fracture in microlaminates , 1996 .

[63]  Dynamic approach for finding effective elastic and piezoelectric constants of superlattices , 1990 .

[64]  I. Mastorakos,et al.  Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces , 2009 .

[65]  P. Huang,et al.  Activation volume and strain rate sensitivity in plastic deformation of nanocrystalline Ti , 2013 .

[66]  Sven C. Vogel,et al.  Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding , 2012 .

[67]  Frans Spaepen,et al.  Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers , 2000 .

[68]  Guang-Ping Zhang,et al.  On interface strengthening ability in metallic multilayers , 2007 .

[69]  Guang-Ping Zhang,et al.  Two different types of shear-deformation behaviour in Au–Cu multilayers , 2009 .

[70]  Gang Liu,et al.  Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films , 2011 .

[71]  Subra Suresh,et al.  Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel , 2003 .

[72]  Ya Gao,et al.  Indentation creep behavior of nano-scale Ag/Co multilayers , 2006 .

[73]  Jun Sun,et al.  Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase , 2011 .

[74]  Haiyan Wang,et al.  A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers , 2012 .

[75]  J. Hirth,et al.  On the strengthening effects of interfaces in multilayer fcc metallic composites , 2002 .

[76]  J. Hirth,et al.  Twinning dislocation multiplication at a coherent twin boundary , 2011 .

[77]  I. Beyerlein,et al.  Mapping dislocation nucleation behavior from bimetal interfaces , 2013 .

[78]  Jun Sun,et al.  Strain rate sensitivity of nanolayered Cu/X (X=Cr, Zr) micropillars: Effects of heterophase interface/twin boundary , 2014 .

[79]  A. S. Edelstein,et al.  Nanoindentation study of the mechanical properties of copper‐nickel multilayered thin films , 1990 .

[80]  T. Germann,et al.  Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates , 2011 .

[81]  M. Anglada,et al.  Contact Deformation Regimes Around Sharp Indentations and the Concept of the Characteristic Strain , 2002 .

[82]  Gang Liu,et al.  Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers , 2012 .

[83]  Weizhong Han,et al.  Design of Radiation Tolerant Materials Via Interface Engineering , 2013, Advanced materials.

[84]  F. Zeng,et al.  Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films , 2010 .

[85]  Amit Misra,et al.  Arrest of He bubble growth in Cu–Nb multilayer nanocomposites , 2008 .

[86]  Guang-Ping Zhang,et al.  Interface instability within shear bands in nanoscale Au/Cu multilayers , 2008 .

[87]  J. Celis,et al.  Dual‐Bath Electrodeposition of Cu/Ni Compositionally Modulated Multilayers , 1994 .

[88]  F. Zeng,et al.  Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers , 2007 .

[89]  Amit Misra,et al.  Rolling textures in nanoscale Cu/Nb multilayers , 2003 .

[90]  Yuanyuan Lu,et al.  The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness , 2014 .

[91]  Bauer,et al.  Structure and growth of crystalline superlattices: From monolayer to superlattice. , 1986, Physical review. B, Condensed matter.

[92]  S. I. Rao,et al.  Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system , 2000 .

[93]  Guanjun Pan,et al.  Modulating individual thickness for optimized combination of strength and ductility in Cu/Ru multilayer films , 2013 .

[94]  F. Zeng,et al.  Influence of plasticity mismatch and porosity on mechanical behavior of nanoscale Ag/W multilayers , 2007 .

[95]  K. T. Ramesh,et al.  Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals , 2004 .

[96]  R. Hoagland,et al.  Room-temperature dislocation climb in metallic interfaces , 2009 .

[97]  T. P. Weihs,et al.  Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries , 2003 .

[98]  Amit Misra,et al.  Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression , 2012 .

[99]  Fei Wang,et al.  Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers , 2014 .

[100]  Q. X. Jia,et al.  Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films , 2012 .

[101]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[102]  László Péter,et al.  Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems , 2010 .

[103]  T. Abinandanan,et al.  A phase field study of morphological instabilities in multilayer thin films , 2009 .

[104]  R. Hoagland,et al.  Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films , 2005 .

[105]  E. Cerreta,et al.  Deformation and failure of shocked bulk Cu–Nb nanolaminates , 2014 .

[106]  Fei Wang,et al.  Microstructure and flow stress of nanoscale Cu/Nb multilayers , 2013 .

[107]  F. Zeng,et al.  Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers , 2009 .

[108]  F. Zeng,et al.  Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers , 2011 .

[109]  Miao Song,et al.  Microstructure and strengthening mechanisms in Cu/Fe multilayers , 2012 .

[110]  D. Dew-Hughes High strength conductor for pulsed magnets , 1993 .

[111]  Zhigang Suo,et al.  Cleavage due to dislocation confinement in layered materials , 1994 .

[112]  R. S. Timsit,et al.  Structure of composition-modulated Cu/Ni thin films prepared by electrodeposition , 1989 .

[113]  Mingjie Yang,et al.  Observation of largely enhanced hardness in nanomultilayers of the Ag–Nb system with positive enthalpy of formation , 2007 .

[114]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[115]  F. Zeng,et al.  Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers , 2008 .

[116]  J. D. Embury,et al.  Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers , 2004 .

[117]  M. Nastasi,et al.  Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films , 2012 .

[118]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[119]  Amit Misra,et al.  Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .

[120]  Nan Li,et al.  Mechanical properties of sputtered Cu/V and Al/Nb multilayer films , 2008 .

[121]  Jian Wang,et al.  A predictive model for microstructure evolution in metallic multilayers with immiscible constituents , 2012 .

[122]  Jian Wang,et al.  Atomic structure variations of mechanically stable fcc-bcc interfaces , 2012 .

[123]  Carl V. Thompson,et al.  Grain Growth in Thin Films , 1990 .

[124]  J. Hirth,et al.  Dislocation injection in strained multilayer structures , 1990 .

[125]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[126]  Jian Wang,et al.  Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition , 2008 .

[127]  L. Hultman,et al.  Growth, structure, and microhardness of epitaxial TiN/NbN superlattices , 1992 .

[128]  C. Thompson Structure Evolution During Processing of Polycrystalline Films , 2000 .

[129]  H. Sawada,et al.  Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films , 2003 .

[130]  Subra Suresh,et al.  Nano-sized twins induce high rate sensitivity of flow stress in pure copper , 2005 .

[131]  P. Anderson,et al.  Dislocation-Based Deformation Mechanisms in Metallic Nanolaminates , 1999 .

[132]  I. Beyerlein,et al.  Structure–Property–Functionality of Bimetal Interfaces , 2012 .

[133]  Jingzhou Zhang,et al.  Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films , 2012 .