Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

Abstract Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem into three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions.We identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.

[1]  Alberto Antonioni,et al.  Coevolution of Synchronization and Cooperation in Costly Networked Interactions. , 2016, Physical review letters.

[2]  William A. Goddard,et al.  Ab initio phonon coupling and optical response of hot electrons in plasmonic metals , 2016, 1602.00625.

[3]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[4]  G. Wiederrecht,et al.  Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. , 2015, Nature nanotechnology.

[5]  Viktoriia E. Babicheva,et al.  Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption , 2015 .

[6]  Hangqi Zhao,et al.  Distinguishing between plasmon-induced and photoexcited carriers in a device geometry , 2015, Nature Communications.

[7]  Steven G. Louie,et al.  Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals , 2015, Nature Communications.

[8]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[9]  P. Hopkins,et al.  Experimental evidence of excited electron number density and temperature effects on electron-phonon coupling in gold films , 2015 .

[10]  S. van de Linde,et al.  Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. , 2015, Nano letters.

[11]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[12]  P. Christopher,et al.  Adsorbate Specificity in Hot Electron Driven Photochemistry on Catalytic Metal Surfaces , 2014 .

[13]  H. Xin,et al.  Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. , 2014, Nano letters.

[14]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[15]  Nathan S. Lewis,et al.  Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates , 2014 .

[16]  Hui Zhang,et al.  Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement , 2014 .

[17]  O. Prezhdo,et al.  Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles. , 2014, Journal of the American Chemical Society.

[18]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[19]  Mark L Brongersma,et al.  Hot-electron photodetection with a plasmonic nanostripe antenna. , 2014, Nano letters.

[20]  S. A. Maier,et al.  Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[21]  Vladimir Lesnyak,et al.  Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. , 2014, ACS nano.

[22]  Hui Zhang,et al.  Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications , 2014 .

[23]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[24]  P. Schuck Nanoimaging: Hot electrons go through the barrier. , 2013, Nature nanotechnology.

[25]  Alán Aspuru-Guzik,et al.  Computational complexity of time-dependent density functional theory , 2013, ArXiv.

[26]  Yurii K. Gun'ko,et al.  Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules , 2013 .

[27]  S. Maier,et al.  Quantum plasmonics , 2013, Nature Physics.

[28]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[29]  Peter Nordlander,et al.  Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device , 2013, Nature Communications.

[30]  Peter Nordlander,et al.  Embedding plasmonic nanostructure diodes enhances hot electron emission. , 2013, Nano letters.

[31]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[32]  Jun Yan,et al.  Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study , 2012, 1212.3011.

[33]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[34]  P. Ajayan,et al.  Plasmon-induced doping of graphene. , 2012, ACS nano.

[35]  H. Petek Photoexcitation of adsorbates on metal surfaces: one-step or three-step. , 2012, The Journal of chemical physics.

[36]  Jiangtian Li,et al.  Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. , 2012, Journal of the American Chemical Society.

[37]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[38]  C. Aikens,et al.  Time-Dependent Density Functional Theory Studies of Optical Properties of Au Nanoparticles: Octahedra, Truncated Octahedra, and Icosahedra , 2012 .

[39]  Yannick Sonnefraud,et al.  Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. , 2012, Nano letters.

[40]  N. Maitra,et al.  Propagation of Initially Excited States in Time-Dependent Density Functional Theory , 2012, 1203.6856.

[41]  S. Louie,et al.  Phonon-assisted optical absorption in silicon from first principles. , 2012, Physical review letters.

[42]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[43]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[44]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[45]  T. Tatsuma,et al.  Solid state photovoltaic cells based on localized surface plasmon-induced charge separation , 2011 .

[46]  Daniel Moses,et al.  Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. , 2011, Nano letters.

[47]  Vladimir M. Shalaev,et al.  Plasmonics Goes Quantum , 2011, Science.

[48]  N. Melosh,et al.  Plasmonic energy collection through hot carrier extraction. , 2011, Nano letters.

[49]  C. Adamo,et al.  Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. , 2011, Physical chemistry chemical physics : PCCP.

[50]  H. Maris,et al.  Propagation of acoustic phonon solitons in nonmetallic crystals , 2011 .

[51]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[52]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[53]  F J García de Abajo,et al.  Quantum plexcitonics: strongly interacting plasmons and excitons. , 2011, Nano letters.

[54]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[55]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.

[56]  M. Broyer,et al.  Optical Properties of Au Nanoclusters from TD-DFT Calculations , 2011 .

[57]  P. Nordlander,et al.  Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. , 2011, The Journal of chemical physics.

[58]  Din Ping Tsai,et al.  Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting , 2011 .

[59]  Garnett W. Bryant,et al.  Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects , 2010 .

[60]  Carlo Jacoboni,et al.  Theory of Electron Transport in Semiconductors , 2010 .

[61]  S. Linic,et al.  Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons , 2010 .

[62]  E. Kioupakis,et al.  Auger recombination and free-carrier absorption in nitrides from first principles , 2010 .

[63]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[64]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[65]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[66]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[67]  J. R. Adleman,et al.  Heterogenous catalysis mediated by plasmon heating. , 2009, Nano letters.

[68]  T. Olsen,et al.  Origin of power laws for reactions at metal surfaces mediated by hot electrons. , 2009, Physical review letters.

[69]  Bernard Amadon,et al.  DFT+U calculations of the ground state and metastable states of uranium dioxide , 2009 .

[70]  K. Thygesen,et al.  Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach , 2009 .

[71]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[72]  Yuyuan Tian,et al.  Electron transport in single molecules: from benzene to graphene. , 2009, Accounts of chemical research.

[73]  M. Tame,et al.  Long-range surface plasmon polariton excitation at the quantum level , 2009, 0901.3972.

[74]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[75]  T. Mallouk,et al.  Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. , 2009, Journal of the American Chemical Society.

[76]  J. Gavnholt,et al.  Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces , 2008, 0810.2630.

[77]  A. Borisov,et al.  Theoretical study of excited electronic states at surfaces, link with photo-emission and photo-desorption experiments , 2008 .

[78]  L. Brus Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. , 2008, Accounts of chemical research.

[79]  M Paternostro,et al.  Single-photon excitation of surface plasmon polaritons. , 2008, Physical review letters.

[80]  G. Schatz,et al.  From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Agn(n= 10, 20, 35, 56, 84, 120) Tetrahedral Clusters , 2008 .

[81]  Zhibin Lin,et al.  Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium , 2008 .

[82]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[83]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[84]  M. Artemyev,et al.  Exciton-plasmon-photon conversion in plasmonic nanostructures. , 2007, Physical review letters.

[85]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[86]  D. King,et al.  Pattern formation during the oxidation of CO on Pt{100}: a mesoscopic model. , 2007, Physical review letters.

[87]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[88]  Martin Wolf,et al.  Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. , 2006, Chemical reviews.

[89]  E. Carpene Ultrafast laser irradiation of metals: Beyond the two-temperature model , 2006 .

[90]  V. Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[91]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[92]  M. Lukin,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[93]  Claudia Ambrosch-Draxl,et al.  First-principles calculation of hot-electron scattering in metals , 2004 .

[94]  H. Brom,et al.  A quantitative evaluation of metallic conduction in conjugated polymers , 2004, cond-mat/0411337.

[95]  G. Ertl,et al.  Electronic excitation and dynamic promotion of a surface reaction. , 2003, Physical review letters.

[96]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[97]  M. Ratner,et al.  Electron Transport in Molecular Wire Junctions , 2003, Science.

[98]  Eric W. McFarland,et al.  A photovoltaic device structure based on internal electron emission , 2003, Nature.

[99]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[100]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[101]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[102]  Weida,et al.  Real-time observation of adsorbate atom motion above a metal surface , 2000, Science.

[103]  J. Pendry,et al.  Playing Tricks with Light , 1999, Science.

[104]  Bonn,et al.  Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) , 1999, Science.

[105]  K. Oura,et al.  Electron-stimulated desorption of hydrogen from H/Si(001)-1×1 surface studied by time-of-flight elastic recoil detection analysis , 1999 .

[106]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[107]  K. Fukutani,et al.  Photoexcited processes at metal and alloy surfaces : Electronic structure and adsorption site , 1997 .

[108]  Ho,et al.  Direct Observation of the Crossover from Single to Multiple Excitations in Femtosecond Surface Photochemistry. , 1996, Physical review letters.

[109]  J. Misewich,et al.  Anomalous branching ratio in the femtosecond surface chemistry of O2Pd(111) , 1996 .

[110]  W. Ho,et al.  REACTIONS AT METAL SURFACES INDUCED BY FEMTOSECOND LASERS, TUNNELING ELECTRONS, AND HEATING , 1996 .

[111]  W. Ho,et al.  Bimolecular surface photochemistry: Mechanisms of CO oxidation on Pt(111) at 85 K , 1993 .

[112]  J. White,et al.  Photoinduced pathways to dissociation and desorption of dioxygen on silver (110) and platinum (111) , 1991 .

[113]  R. Cavanagh,et al.  Laser-excited hot-electron induced desorption: A theoretical model applied to NO/Pt(111) , 1990 .

[114]  Heinz,et al.  Desorption induced by femtosecond laser pulses. , 1990, Physical review letters.

[115]  King,et al.  Optically driven surface reactions: Evidence for the role of hot electrons. , 1988, Physical review letters.

[116]  R. Landauer,et al.  Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988, IBM J. Res. Dev..

[117]  Martin Moskovits,et al.  Enhanced photochemistry on silver surfaces , 1987 .

[118]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[119]  W. Guthrie,et al.  The decomposition of ammonia on the flat (111) and stepped (557) platinum crystal surfaces , 1981 .

[120]  Vikram L. Dalal,et al.  Simple Model for Internal Photoemission , 1971 .

[121]  D. Peters An infrared detector utilizing internal photoemission , 1967 .

[122]  R. Gomer,et al.  Desorption from Metal Surfaces by Low‐Energy Electrons , 1964 .

[123]  R. Fowler,et al.  The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures , 1931 .

[124]  C. E. Wait THE EPSOM MINERAL WATER OF MISSOURI. , 1880, Science.

[125]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[126]  M. Moskovits The case for plasmon-derived hot carrier devices. , 2015, Nature nanotechnology.

[127]  Nianqiang Wu,et al.  Plasmon-Enhanced Solar Energy Harvesting , 2013 .

[128]  A. G. Borisov,et al.  Theoretical study of excited electronic states at surfaces, link with photo-emission and photo-desorption experiments , 2008 .

[129]  J. W. Gadzuk Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption , 2000 .

[130]  J. White,et al.  Photoinduced pathways to dissociation and desorption of dioxygen on Ag(110) and Pt(111) , 1991 .

[131]  Robert E. Walkup,et al.  Fundamental Mechanisms of Desorption and Fragmentation Induced by Electronic Transitions at Surfaces , 1989 .

[132]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[133]  Lukas Novotny,et al.  Optical Antennas , 2009 .