Residual stress characterization in structural materials by destructive and nondestructive techniques

Transmutation of nuclear waste is currently being considered to transform long-lived isotopes to species with relatively short half-lives and reduced radioactivity through capture and decay of minor actinides and fission products. This process is intended for geologic disposal of spent nuclear fuels for shorter durations in the proposed Yucca Mountain repository. The molten lead-bismuth-eutectic will be used as a target and coolant during transmutation, which will be contained in a subsystem vessel made from materials such as austenitic (304L) and martensitic (EP-823 and HT-9) stainless steels. The structural materials used in this vessel will be subjected to welding operations and plastic deformation during fabrication. The resultant residual stresses cannot be totally eliminated even by stress-relief operations. Destructive and nondestructive techniques have been used to evaluate residual stresses in the welded and cold-worked specimens. Results indicate that tensile residual stresses were generated at the fusion line of the welded specimens made from either austenitic or martensitic stainless steel, with reduced stresses away from this region. The magnitude of residual stress in the cold-worked specimens was enhanced at intermediate cold-reduction levels, showing tensile residual stresses in the austenitic material while exhibiting compressive stresses in the martensitic alloys. Comparative analyses of the resultant data obtained by different techniques revealed consistent stress patterns.