A Realistic Seizure Prediction Study Based on Multiclass SVM

A patient-specific algorithm, for epileptic seizure prediction, based on multiclass support-vector machines (SVM) and using multi-channel high-dimensional feature sets, is presented. The feature sets, combined with multiclass classification and post-processing schemes aim at the generation of alarms and reduced influence of false positives. This study considers 216 patients from the European Epilepsy Database, and includes 185 patients with scalp EEG recordings and 31 with intracranial data. The strategy was tested over a total of 16,729.80[Formula: see text]h of inter-ictal data, including 1206 seizures. We found an overall sensitivity of 38.47% and a false positive rate per hour of 0.20. The performance of the method achieved statistical significance in 24 patients (11% of the patients). Despite the encouraging results previously reported in specific datasets, the prospective demonstration on long-term EEG recording has been limited. Our study presents a prospective analysis of a large heterogeneous, multicentric dataset. The statistical framework based on conservative assumptions, reflects a realistic approach compared to constrained datasets, and/or in-sample evaluations. The improvement of these results, with the definition of an appropriate set of features able to improve the distinction between the pre-ictal and nonpre-ictal states, hence minimizing the effect of confounding variables, remains a key aspect.

[1]  H. Adeli,et al.  Analysis of EEG records in an epileptic patient using wavelet transform , 2003, Journal of Neuroscience Methods.

[2]  Andreas Schulze-Bonhage,et al.  Feature selection in high dimensional EEG features spaces for epileptic seizure prediction , 2011 .

[3]  AdeliHojjat,et al.  Improved spiking neural networks for EEG classification and epilepsy and seizure detection , 2007 .

[4]  H. Adeli,et al.  Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology , 2010 .

[5]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[6]  Hojjat Adeli,et al.  Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection , 2008, IEEE Transactions on Biomedical Engineering.

[7]  Luigi Chisci,et al.  Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines , 2010, IEEE Transactions on Biomedical Engineering.

[8]  G. Vachtsevanos,et al.  Epileptic Seizures May Begin Hours in Advance of Clinical Onset A Report of Five Patients , 2001, Neuron.

[9]  G. Jamal,et al.  Changes in a measure of cardiac vagal activity before and after epileptic seizures , 1999, Epilepsy Research.

[10]  Jui-Sheng Chou,et al.  Smart Artificial Firefly Colony Algorithm‐Based Support Vector Regression for Enhanced Forecasting in Civil Engineering , 2015, Comput. Aided Civ. Infrastructure Eng..

[11]  Nitesh V. Chawla,et al.  Editorial: special issue on learning from imbalanced data sets , 2004, SKDD.

[12]  Ivan Osorio,et al.  Automated seizure Detection using EKG , 2014, Int. J. Neural Syst..

[13]  Viglione Ss,et al.  Proceedings: Epileptic seizure prediction. , 1975 .

[14]  Sauptik Dhar,et al.  Visualization and Interpretation of SVM Classifiers , 2011 .

[15]  C. Elger,et al.  Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[16]  F. Mormann,et al.  Seizure prediction: Any better than chance? , 2009, Clinical Neurophysiology.

[17]  T. Ulrych,et al.  Maximum entropy power spectrum of truncated sinusoids , 1972 .

[18]  B. Malow,et al.  Sleep Deprivation and Epilepsy , 2004, Epilepsy currents.

[19]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[20]  A. Kraskov,et al.  On the predictability of epileptic seizures , 2005, Clinical Neurophysiology.

[21]  C. A. Teixeira,et al.  EPILAB: A software package for studies on the prediction of epileptic seizures , 2011, Journal of Neuroscience Methods.

[22]  G. Jackson,et al.  Functional MRI of the pre-ictal state. , 2005, Brain : a journal of neurology.

[23]  William Gaetz,et al.  Enhanced Synchrony in Epileptiform Activity? Local versus Distant Phase Synchronization in Generalized Seizures , 2005, The Journal of Neuroscience.

[24]  Hojjat Adeli,et al.  Mixed-Band Wavelet-Chaos-Neural Network Methodology for Epilepsy and Epileptic Seizure Detection , 2007, IEEE Transactions on Biomedical Engineering.

[25]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[26]  G. Lightbody,et al.  Performance assessment for EEG-based neonatal seizure detectors , 2011, Clinical Neurophysiology.

[27]  Andreas Schulze-Bonhage,et al.  Epileptic seizure predictors based on computational intelligence techniques: A comparative study with 278 patients , 2014, Comput. Methods Programs Biomed..

[28]  Sylvain Rheims,et al.  Epilepsy: new epidemiological and therapeutic perspectives , 2012, The Lancet Neurology.

[29]  Yann LeCun,et al.  Classification of patterns of EEG synchronization for seizure prediction , 2009, Clinical Neurophysiology.

[30]  C. Elger,et al.  Seizure prediction by non‐linear time series analysis of brain electrical activity , 1998, The European journal of neuroscience.

[31]  Francesco Carlo Morabito,et al.  SVM classification of epileptic EEG recordings through multiscale permutation entropy , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[32]  Chih-Jen Lin,et al.  A Comparison of Methods for Multi-class Support Vector Machines , 2015 .

[33]  Hojjat Adeli,et al.  Improved spiking neural networks for EEG classification and epilepsy and seizure detection , 2007, Integr. Comput. Aided Eng..

[34]  José Salvador Sánchez,et al.  Strategies for learning in class imbalance problems , 2003, Pattern Recognit..

[35]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[36]  J. Martinerie,et al.  Characterizing Neurodynamic Changes Before Seizures , 2001, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[37]  Kaspar Anton Schindler,et al.  Application of a multivariate seizure detection and prediction method to non-invasive and intracranial long-term EEG recordings , 2008, Clinical Neurophysiology.

[38]  Florian Mormann,et al.  What is the present-day EEG evidence for a preictal state? , 2011, Epilepsy Research.

[39]  Miguel Figueroa,et al.  Competitive learning with floating-gate circuits , 2002, IEEE Trans. Neural Networks.

[40]  P. Kwan,et al.  Early identification of refractory epilepsy. , 2000, The New England journal of medicine.

[41]  R. Barandelaa,et al.  Strategies for learning in class imbalance problems , 2003, Pattern Recognit..

[42]  Andreas Schulze-Bonhage,et al.  Brainatic: A System for Real-Time Epileptic Seizure Prediction , 2014 .

[43]  Hojjat Adeli,et al.  A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection , 2009, Neural Networks.

[44]  Pramod P Khargonekar,et al.  Support vector machines for seizure detection in an animal model of chronic epilepsy , 2010, Journal of neural engineering.

[45]  W. Hauser,et al.  Comment on Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[46]  Ali H. Shoeb,et al.  Non-Invasive Computerized System for Automatically Initiating Vagus Nerve Stimulation Following Patient-Specific Detection of Seizures or epileptiform discharges , 2009, Int. J. Neural Syst..

[47]  Andreas Schulze-Bonhage,et al.  EPILEPSIAE - A European epilepsy database , 2012, Comput. Methods Programs Biomed..

[48]  Brian Litt,et al.  The statistics of a practical seizure warning system , 2008, Journal of neural engineering.

[49]  Li Yao,et al.  Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data , 2011, PloS one.

[50]  Nitesh V. Chawla,et al.  SPECIAL ISSUE ON LEARNING FROM IMBALANCED DATA SETS , 2004 .

[51]  Yusuf Uzzaman Khan,et al.  A Wavelet-Statistical Features Approach for Nonconvulsive Seizure Detection , 2014, Clinical EEG and neuroscience.

[52]  W. Stacey,et al.  Technology Insight: neuroengineering and epilepsy—designing devices for seizure control , 2008, Nature Clinical Practice Neurology.

[53]  Keshab K. Parhi,et al.  Seizure Prediction With Spectral Power of EEG Using Cost-Sensitive Support Vector Machines , 2010 .

[54]  W. J. Williams,et al.  Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures , 2005, Brain Topography.

[55]  J Pardey,et al.  A review of parametric modelling techniques for EEG analysis. , 1996, Medical engineering & physics.

[56]  Tan Yee Fan,et al.  A Tutorial on Support Vector Machine , 2009 .

[57]  J. Drummond,et al.  A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power, and dominance shift in the determination of depth of anesthesia , 1991, Acta anaesthesiologica Scandinavica.

[58]  Clodoaldo Ap. M. Lima,et al.  Automatic recognition of epileptic seizure in EEG via support vector machine and dimension fractal , 2009, 2009 International Joint Conference on Neural Networks.

[59]  David M. Himes,et al.  Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study , 2013, The Lancet Neurology.

[60]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[61]  Mark Quigg,et al.  Circadian rhythms: interactions with seizures and epilepsy , 2000, Epilepsy Research.

[62]  Chih-Jen Lin,et al.  Feature Ranking Using Linear SVM , 2008, WCCI Causation and Prediction Challenge.

[63]  César Alexandre Teixeira,et al.  Output regularization of SVM seizure predictors: Kalman Filter versus the “Firing Power” method , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[64]  A. Schulze-Bonhage,et al.  Do False Predictions of Seizures Depend on the State of Vigilance? A Report from Two Seizure‐Prediction Methods and Proposed Remedies , 2006, Epilepsia.

[65]  W T Blume,et al.  The postictal electroencephalogram. , 1988, Electroencephalography and clinical neurophysiology.

[66]  Jian-Guo Zhang,et al.  Responsive neurostimulation for the treatment of medically intractable epilepsy , 2013, Brain Research Bulletin.

[67]  Keshab K. Parhi,et al.  Early Seizure Detection Using Neuronal Potential Similarity: A Generalized Low-Complexity and Robust Measure , 2015, Int. J. Neural Syst..

[68]  A. Schulze-Bonhage,et al.  Views of patients with epilepsy on seizure prediction devices , 2010, Epilepsy & Behavior.

[69]  Hojjat Adeli,et al.  A Wavelet-Chaos Methodology for Analysis of EEGs and EEG Subbands to Detect Seizure and Epilepsy , 2007, IEEE Transactions on Biomedical Engineering.

[70]  A. Schulze-Bonhage,et al.  The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods , 2003, Epilepsy & Behavior.

[71]  B. Hjorth EEG analysis based on time domain properties. , 1970, Electroencephalography and clinical neurophysiology.

[72]  Andreas Schulze-Bonhage,et al.  Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. , 2006, Chaos.

[73]  Jens Timmer,et al.  The EPILEPSIAE database: An extensive electroencephalography database of epilepsy patients , 2012, Epilepsia.

[74]  J. Kurths,et al.  Sensitivity and specificity of coherence and phase synchronization analysis , 2006 .

[75]  R. Quiroga,et al.  Stationarity of the EEG series , 1995 .

[76]  J. Parra,et al.  Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic Activity , 2003, Epilepsia.

[77]  I. Osorio,et al.  Real‐Time Automated Detection and Quantitative Analysis of Seizures and Short‐Term Prediction of Clinical Onset , 1998, Epilepsia.

[78]  Klaus Lehnertz,et al.  Testing the null hypothesis of the nonexistence of a preseizure state. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.