An effective strategy of indium half-doping to stabilize the structure and improve optoelectronic characteristics of Tl-Co based double perovskite: First principle study

[1]  Yanlin Tang,et al.  First-principles study on the mechanical, electronic and optical properties of double halide perovskite Cs2TlSbX6 (X = Cl, Br, I) , 2022, Physica Scripta.

[2]  Q. Mahmood,et al.  Study of new double perovskites Tl2PtX6 (X = Cl, Br, I) for solar cells and thermoelectric applications , 2022, Physica Scripta.

[3]  Rongjian Sa,et al.  The tunable electronic structure and optical properties of vacancy-ordered double perovskites Tl2PdBr Cl6- (x = 0, 2, 4, 6) , 2022, Chemical Physics.

[4]  K. Yadav,et al.  Photocatalytic CO2 Reduction Using an Amorphous TiO2-Encapsulated Cs2AgBiBr6 Nanocrystal: Selective Methane Formation , 2022, Energy & Fuels.

[5]  J. Qiu,et al.  Surface and Defect Engineering Coupling of Halide Double Perovskite Cs2NaBiCl6 for Efficient CO2 Photoreduction , 2022, Advanced Energy Materials.

[6]  Nouf H. Alotaibi,et al.  Frist principle study of double perovskites Cs2AgSbX6 (X = Cl, Br, I) for solar cell and renewable energy applications , 2022, Journal of Physics and Chemistry of Solids.

[7]  P. Sellin,et al.  Self-Powered X-ray Detection and Imaging using Cs2AgBiCl6 Lead-Free Double Perovskite Single Crystal , 2022, ACS Applied Electronic Materials.

[8]  Xiaosong Zhang,et al.  Blue‐Light‐Excited Lead‐Free Double Perovskite Cs2Ag0.6Na0.4In0.8Bi0.2Cl6/xKBr(KI) at Room Temperature and Photovoltaic Applications , 2022, Advanced Optical Materials.

[9]  E. Aydil,et al.  Reactive Physical Vapor Deposition of Yb-Doped Lead-Free Double Perovskite Cs2AgBiBr6 with 95% Photoluminescence Quantum Yield , 2022, ACS Applied Electronic Materials.

[10]  Kaimin Du,et al.  Boosting the Upconversion and Near‐Infrared Emission via Alloying Bi3+ in Cs2NaErCl6 Double Perovskite , 2022, Laser & Photonics Reviews.

[11]  E. Hutter,et al.  Halide Double-Perovskite Semiconductors beyond Photovoltaics , 2022, ACS energy letters.

[12]  J. Ghosh,et al.  Recent advances in lead-free double perovskites for x-ray and photodetection , 2022, Nanotechnology.

[13]  Han Chen,et al.  First-principles calculations of the structure, electronic and optical properties of Cs2AgxNa1-xInBr6 double perovskites , 2022, Chemical Physics.

[14]  Chao Qian,et al.  Two novel carbon allotropes with tetragonal symmetry: First-principles calculations , 2022, Journal of Solid State Chemistry.

[15]  Jia Zhu,et al.  All-perovskite tandem solar cells with improved grain surface passivation , 2022, Nature.

[16]  P. Lu,et al.  Quasiparticle, optical, and excitonic properties of layer dependent GaSe , 2022, Physica E: Low-dimensional Systems and Nanostructures.

[17]  Xian-Hao Zhao,et al.  Exploring the structural, electronic and optical properties of vacancy-ordered double perovskites Cs2TlAsX6 (X = I, Br, Cl) based on first-principles , 2022, Physics Letters A.

[18]  R. Moessner,et al.  Skin effect as a probe of transport regimes in Weyl semimetals , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Shanshan Huang,et al.  Tailoring the Highly Efficient Upconversion Luminescence of All‐Inorganic Er3+‐Based Halide Double Perovskites by Introducing Various Energy Trapping Centers , 2022 .

[20]  Wenbo Guo,et al.  Anti-Perovskite Carbides Ca6CSe4 and Sr6CSe4 for Photovoltaics with Similar Optoelectronic Properties to MAPbI3 , 2022, Journal of Materials Chemistry A.

[21]  Kunpeng Song,et al.  Two-dimension Black phosphorus modified Cs2AgBiBr6 with Efficient Charge Separation for Enhanced Visible-light Photocatalytic H2 Evolution , 2022, Journal of Materials Chemistry C.

[22]  B. Zou,et al.  High Efficiency Near-Infrared Light Emission and Ultra-high Stability Lead-free Double Perovskite Cs2Na1-xAgxBi1-yAlyCl6 , 2022, Journal of Materials Chemistry C.

[23]  Xian-Hao Zhao,et al.  An ab-initio investigation of novel double halide perovskite Cs2InCoX6(X=F, Cl, Br) materials with direct band structure and broadband light absorption , 2022, Materials Science in Semiconductor Processing.

[24]  Y. Gogotsi,et al.  Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2T MXene , 2022, Chemical Engineering Journal.

[25]  Q. Xie,et al.  Theoretical prediction of the structural, electronic and optical properties of vacancy-ordered double perovskites Tl2TiX6 (X = Cl, Br, I) , 2022 .

[26]  M. Saeed,et al.  Electronic structure and optical response of double perovskite Rb2NaCoF6 for optoelectronic devices , 2021, Physica B: Condensed Matter.

[27]  Taharh Zelai The study of optoelectronic and thermoelectric properties of Tl2PdX6 (X = Cl, Br, I) for energy harvesting , 2021, International Journal of Energy Research.

[28]  J. Hohl‐Ebinger,et al.  Fast and accurate short-circuit current versus irradiance determination of a spectrally nonlinear solar cell using a spectral shaping setup , 2021 .

[29]  C. Sudakar,et al.  Bandgap engineering and sublattice distortion driven bandgap bowing in Cs2Ag1-xNaxBiCl6 double perovskites , 2021 .

[30]  S. Stranks,et al.  22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap , 2021, Energy & Environmental Science.

[31]  R. Ahuja,et al.  Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics , 2021 .

[32]  H. Kim,et al.  Thallium lead iodide (TlPbI3) single crystal inorganic perovskite: Electrical and optical characterization for gamma radiation detection , 2021 .

[33]  J. Llanos,et al.  Structure and Properties of (CH3NH3)3Tl2Cl9: A Thallium-Based Hybrid Perovskite-Like Compound. , 2020, Inorganic chemistry.

[34]  D. Gupta,et al.  Magneto-electronic, mechanical, thermoelectric and thermodynamic properties of ductile perovskite Ba2SmNbO6 , 2020 .

[35]  Z. Xia,et al.  Homo/Hetero-Valent Doping Mediated Self-Trapped Excitons Emission and Energy Transfer in Mn-doped Cs2Na1-xAgxBiCl6 Double Perovskites. , 2019, The journal of physical chemistry letters.

[36]  Wenzhi Wu,et al.  Temperature-dependent photoluminescence of Cs2AgxNa1-xInCl6 microcrystals , 2019 .

[37]  R. Luque,et al.  Mechanochemical synthesis of three double perovskites: Cs2AgBiBr6, (CH3NH3)2TlBiBr6 and Cs2AgSbBr6. , 2019, Nanoscale.

[38]  S. Jadkar,et al.  Cs2TlBiI6: a new lead-free halide double perovskite with direct band gap , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  Y. Hao,et al.  Potential Applications of Halide Double Perovskite Cs2AgInX6 (X = Cl, Br) in Flexible Optoelectronics: Unusual Effects of Uniaxial Strains. , 2019, The journal of physical chemistry letters.

[40]  C. Pietzonka,et al.  The Fluoroperovskite TlMnF3 , 2018, Zeitschrift für anorganische und allgemeine Chemie.

[41]  A. Bouhemadou,et al.  Structural, elastic and lattice dynamical properties of the alkali metal tellurides: First-principles study , 2017 .

[42]  Z. You,et al.  Mechanical, electronic and thermodynamic properties of hexagonal and orthorhombic U2Mo: A first-principle calculation , 2017 .

[43]  D. Mitzi,et al.  Intrinsic Instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study. , 2017, Journal of the American Chemical Society.

[44]  P. Manuel,et al.  Unusual magnetic structure of the high-pressure synthesized perovskites A CrO 3 (A =Sc , In, Tl) , 2017, 1702.04523.

[45]  F. Giustino,et al.  Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. , 2016, The journal of physical chemistry letters.

[46]  Afzal Khan,et al.  Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature , 2016 .

[47]  Yuanhua Lin,et al.  Influence of B Concentration on the Structural Stability and Mechanical Properties of Nb–B Compounds , 2015 .

[48]  G. Henkelman,et al.  Optimization methods for finding minimum energy paths. , 2008, The Journal of chemical physics.

[49]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[50]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[51]  M. Fox Optical Properties of Solids , 2002 .

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[54]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .