Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: Review and model evaluation

Abstract During the decades of kinetic studies over iron and cobalt based Fischer–Tropsch synthesis (FTS) catalysts, various mechanisms and equations have been proposed with a wide diversity. Literature review indicates that neither general kinetic model nor the same shape for reaction rate equation has been proposed for FTS. In the present paper, a generalized mechanism was developed and verified against reported kinetic data for both iron and cobalt based FTS catalysts. Also it was shown that all various types of the proposed mechanisms can fall under the heading of one general mechanism. The proposed generalized macro kinetic model can be applied simultaneously to both iron and cobalt based FTS catalysts.

[1]  F. M. Meeuse,et al.  Is a monolithic loop reactor a viable option for Fischer-Tropsch synthesis? , 2003 .

[2]  N. Kruse,et al.  Hydrocarbon chain lengthening in catalytic CO hydrogenation: evidence for a CO-insertion mechanism. , 2012, Journal of the American Chemical Society.

[3]  M. Dry,et al.  Practical and theoretical aspects of the catalytic Fischer-Tropsch process , 1996 .

[4]  J. Benziger,et al.  Reactions and reaction intermediates on iron surfaces: I. Methanol, ethanol, and isopropanol on Fe(100) , 1980 .

[5]  J. G. Goodwin,et al.  Zr Promotion of Co/SiO2 for Fischer-Tropsch Synthesis , 1995 .

[6]  E. Walter,et al.  Transient isotopic tracing of methanation kinetics with parallel paths , 1997 .

[7]  G. Srinivas,et al.  Infrared Study of the Dynamics of Adsorbed Species During Co Hydrogenation , 1995 .

[8]  G. Odian,et al.  Principles of polymerization , 1981 .

[9]  G. Froment,et al.  Kinetic Model of Fischer–Tropsch Synthesis in a Slurry Reactor on Co–Re/Al2O3 Catalyst , 2013 .

[10]  P. Maitlis,et al.  Fischer–Tropsch, organometallics, and other friends , 2004 .

[11]  G. Jacobs,et al.  Fischer−Tropsch Synthesis: Kinetics and Effect of Water for a Co/SiO2 Catalyst , 2005 .

[12]  Christoph Kern,et al.  Modeling of Multi-Tubular Reactors for Fischer-Tropsch Synthesis , 2009 .

[13]  Manos Mavrikakis,et al.  CO activation pathways and the mechanism of Fischer–Tropsch synthesis , 2010 .

[14]  A. Cabot,et al.  Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy. , 2009, The journal of physical chemistry. B.

[15]  Bohdan W. Wojciechowski,et al.  The Kinetics of the Fischer-Tropsch Synthesis , 1988 .

[16]  Jinghua Guo,et al.  Size-dependent dissociation of carbon monoxide on cobalt nanoparticles. , 2013, Journal of the American Chemical Society.

[17]  Oliver R. Inderwildi,et al.  Fischer−Tropsch Mechanism Revisited: Alternative Pathways for the Production of Higher Hydrocarbons from Synthesis Gas , 2008 .

[18]  Charles N. Satterfield,et al.  Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst , 1984 .

[19]  A. Kiennemann,et al.  Mechanistic Aspects of the Formation of Hydrocarbons and Alcohols from CO Hydrogenation , 1993 .

[20]  Dragomir B. Bukur,et al.  Reaction kinetics over iron catalysts used for the fischer‐tropsch synthesis , 1990 .

[21]  H. Pichler,et al.  Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2 , 1970 .

[22]  R. Brady,et al.  Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction , 1980 .

[23]  Mechanistic study of the high-temperature Fischer-Tropsch synthesis using transient kinetics , 2006 .

[24]  W. Sachtler,et al.  Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: Mechanistic implications , 1979 .

[25]  Guy Marin,et al.  Single-Event Microkinetic Model for Fischer−Tropsch Synthesis on Iron-Based Catalysts , 2008 .

[26]  C. Bennett,et al.  Kinetics of the Fischer-Tropsch Reaction over Iron , 1979 .

[27]  F. Botes,et al.  The Development of a Macro Kinetic Model for a Commercial Co/Pt/Al2O3 Fischer−Tropsch Catalyst , 2009 .

[28]  G. Blyholder,et al.  Structures of Some CxHyO Compounds Adsorbed on Nickel1 , 1966 .

[29]  Hydrogen and Temperature Effects on the Coverages and Activities of Surface Intermediates during Methanation on Ru/SiO2 , 1997 .

[30]  D. Ollis,et al.  The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts , 1981 .

[31]  F. Gideon Botes,et al.  Development and Testing of a New Macro Kinetic Expression for the Iron-Based Low-Temperature Fischer−Tropsch Reaction , 2006 .

[32]  R. Zennaro,et al.  Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt , 2000 .

[33]  F. G. Botes,et al.  A comparison of cobalt and iron based slurry phase Fischer–Tropsch synthesis , 2013 .

[34]  A. Miyamoto,et al.  Promotion effects of vanadium, niobium, molybdenum, tungsten, and rhenium oxides on surface reactions in the carbon monoxide hydrogenation over ruthenium/aluminum oxide catalyst , 1986 .

[35]  Inverse kinetic isotope effects and deuterium enrichment as a function of carbon number during formation of C–C bonds in cobalt catalyzed Fischer–Tropsch synthesis , 2011 .

[36]  R. Zennaro,et al.  Detailed Kinetics of the Fischer–Tropsch Synthesis on Cobalt Catalysts Based on H-Assisted CO Activation , 2011 .

[37]  C. Satterfield,et al.  Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst , 1991 .

[38]  W. Sachtler,et al.  Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium , 1986 .

[39]  Burtron H. Davis,et al.  Fischer–Tropsch Synthesis: Reaction mechanisms for iron catalysts , 2009 .

[40]  De Chen,et al.  Microkinetic modelling of the formation of C1 and C2 products in the Fischer–Tropsch synthesis over cobalt catalysts , 2006 .

[41]  Cuong Pham-Huu,et al.  Effect of structure and thermal properties of a Fischer–Tropsch catalyst in a fixed bed , 2009 .

[42]  P. Maitlis,et al.  The role of electrophilic species in the Fischer-Tropsch reaction. , 2009, Chemical communications.

[43]  J. Dumesic,et al.  The effects of metal-oxygen bond strength on properties of oxides: II. Water-gas shift over bulk oxides , 1986 .

[44]  J. Benziger,et al.  Reactions and reaction intermediates on iron surfaces: III. Reactions of aldehydes and ketones on Fe(100) , 1982 .

[45]  Im Ionel Ciobica,et al.  Hydrogen-assisted CO dissociation on the Co(211) stepped surface , 2012 .

[46]  M. Dry High quality diesel via the Fischer–Tropsch process – a review , 2002 .

[47]  Hans Schulz,et al.  Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts , 1999 .

[48]  Jian Xu,et al.  Studies and Discriminations of the Kinetic Models for the Iron-Based Fischer−Tropsch Catalytic Reaction in a Recycle Slurry Reactor , 2011 .

[49]  A. Outi,et al.  Kinetics and mechanism of the fischer tropsch hydrocarbon synthesis on a cobalt on alumina catalyst , 1981 .

[50]  Im Ionel Ciobica,et al.  Mechanisms for Chain Growth in Fischer–Tropsch Synthesis over Ru(0001) , 2002 .

[51]  Jia Yang,et al.  Reaction mechanism of CO activation and methane formation on Co Fischer-Tropsch catalyst: A combined DFT, transient, and steady-state kinetic modeling , 2013 .

[52]  W.-D. Deckwer,et al.  Kinetics of the Fischer-Tropsch synthesis in the slurry phase on a potassium promoted iron catalyst , 1985 .

[53]  G. Somorjai,et al.  Promotion of CO and CO2 Hydrogenation over Rh by Metal Oxides: The Influence of Oxide Lewis Acidity and Reducibility , 1994 .

[54]  H. Schulz Principles of Fischer–Tropsch synthesis—Constraints on essential reactions ruling FT-selectivity , 2013 .

[55]  Jc Jaap Schouten,et al.  Mechanistic pathway for methane formation over an iron-based catalyst , 2008 .

[56]  B. Davis,et al.  Fischer-Tropsch synthesis: comparison of carbon-14 distributions when labeled alcohol is added to the synthesis gas , 1991 .

[57]  Raymond C. Everson,et al.  Fischer−Tropsch Kinetic Studies with Cobalt−Manganese Oxide Catalysts , 2000 .

[58]  J. Gaube,et al.  Further support for the two-mechanisms hypothesis of Fischer–Tropsch synthesis , 2010 .

[59]  M. Vannice The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: I. The specific activities and product distributions of supported metals , 1975 .

[60]  Antonie A. C. M. Beenackers,et al.  Intrinsic kinetics of the gas-solid Fischer-Tropsch and water gas shift reactions over a precipitated iron catalyst , 2000 .

[61]  James G. Goodwin,et al.  Relationships between oxygenate and hydrocarbon formation during CO hydrogenation on Rh/SiO2: Use of multiproduct SSITKA , 2010 .

[62]  V. Ponec Some Aspects of the Mechanism of Methanation and Fischer-Tropsch Synthesis , 1978 .

[63]  P. Biloen,et al.  Mechanism of Hydrocarbon Synthesis over Fischer-Tropsch Catalysts , 1982 .

[64]  J. Gaube,et al.  Studies on the reaction mechanism of the Fischer-Tropsch synthesis on iron and cobalt catalysts , 2008 .

[65]  John R. Moss,et al.  Organometallic chemistry and surface science: mechanistic models for the Fischer–Tropsch synthesis , 2000 .

[66]  A. Bell,et al.  Effects of Dispersion and Metal-Metal Oxide Interactions on Fischer-Tropsch Synthesis over Ru/TiO2 and TiO2-Promoted Ru/SiO2 , 1994 .

[67]  Bohdan W. Wojciechowski,et al.  Studies of the fischer-tropsch synthesis on a cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons , 1989 .

[68]  A. M. Efstathiou,et al.  Mechanistic aspects of the water–gas shift reaction on alumina-supported noble metal catalysts: In situ DRIFTS and SSITKA-mass spectrometry studies , 2007 .

[69]  M. Neurock,et al.  CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts. , 2013, Journal of the American Chemical Society.

[70]  G. Blyholder,et al.  Infrared Spectra and Structures of Some CxHyO compounds Adsorbed on Silica-Supported Iron, Cobalt, and Nickel , 1966 .

[71]  Rajamani Krishna,et al.  Modelling of a bubble column slurry reactor for Fischer Tropsch synthesis , 1999 .

[72]  V. Ponec,et al.  The Role of Chemisorption of Fischer-Tropsch Synthesis , 1979 .

[73]  J. Nakamura,et al.  Formation of carbidic and graphite carbon from CO on polycrystalline cobalt , 1988 .

[74]  Rajamani Krishna,et al.  Design and scale-up of the Fischer–Tropsch bubble column slurry reactor , 2000 .

[75]  M. Dry Advances in Fishcher-Tropsch Chemistry , 1976 .

[76]  V. Ponec,et al.  Reactions of CHxCl4−x with hydrogen: Relation to the Fischer-Tropsch synthesis of hydrocarbons , 1984 .