A Shrinkage-Thresholding Metropolis Adjusted Langevin Algorithm for Bayesian Variable Selection
暂无分享,去创建一个
Gersende Fort | Eric Moulines | Amandine Schreck | Sylvain Le Corff | É. Moulines | G. Fort | A. Schreck | Amandine Schreck
[1] L. Breiman. The Little Bootstrap and other Methods for Dimensionality Selection in Regression: X-Fixed Prediction Error , 1992 .
[2] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[3] E. George,et al. Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .
[4] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[5] B. Carlin,et al. Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .
[6] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[7] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[8] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[9] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[10] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[11] S. F. Jarner,et al. Geometric ergodicity of Metropolis algorithms , 2000 .
[12] T. Fearn,et al. Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem , 2001 .
[13] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[14] S. Godsill. On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .
[15] Petros Dellaportas,et al. On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..
[16] Matthew West,et al. Bayesian factor regression models in the''large p , 2003 .
[17] G. Roberts,et al. Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .
[18] J. S. Rao,et al. Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.
[19] David J. Nott,et al. Adaptive sampling for Bayesian variable selection , 2005 .
[20] Y. Atchadé. An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .
[21] J. Rosenthal,et al. Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains , 2006, math/0702412.
[22] G. Roberts,et al. OPTIMAL SCALING FOR PARTIALLY UPDATING MCMC ALGORITHMS , 2006, math/0607054.
[23] A. Tsybakov,et al. Sparsity oracle inequalities for the Lasso , 2007, 0705.3308.
[24] S. Geer. HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS AND THE LASSO , 2008, 0804.0703.
[25] G. Casella,et al. The Bayesian Lasso , 2008 .
[26] Arnaud Doucet,et al. Sparse Bayesian nonparametric regression , 2008, ICML '08.
[27] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[28] Arnak S. Dalalyan,et al. Sparse Regression Learning by Aggregation and Langevin Monte-Carlo , 2009, COLT.
[29] R. O’Hara,et al. A review of Bayesian variable selection methods: what, how and which , 2009 .
[30] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[31] Jian Li,et al. Efficient sparse Bayesian learning via Gibbs sampling , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.
[32] J. Griffin,et al. BAYESIAN HYPER‐LASSOS WITH NON‐CONVEX PENALIZATION , 2011 .
[33] D. Dunson,et al. Bayesian Variable Selection via Particle Stochastic Search. , 2011, Statistics & probability letters.
[34] Bhaskar D. Rao,et al. Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.
[35] F. Lucka. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors , 2012, 1206.0262.
[36] A. Tsybakov,et al. Sparse Estimation by Exponential Weighting , 2011, 1108.5116.
[37] Kai Siedenburg. PERSISTENT EMPIRICAL WIENER ESTIMATION WITH ADAPTIVE THRESHOLD SELECTION FOR AUDIO DENOISING , 2012 .
[38] Christophe Andrieu,et al. Annealed Importance Sampling Reversible Jump MCMC Algorithms , 2013 .
[39] Nicolas Chopin,et al. Sequential Monte Carlo on large binary sampling spaces , 2011, Statistics and Computing.
[40] P. Dellaportas,et al. An MCMC model search algorithm for regression problems , 2013 .
[41] S. Schmidler,et al. Adaptive Markov Chain Monte Carlo for Bayesian Variable Selection , 2013 .
[42] Jim E. Griffin,et al. Adaptive Monte Carlo for Bayesian Variable Selection in Regression Models , 2013 .
[43] Marcelo Pereyra,et al. Proximal Markov chain Monte Carlo algorithms , 2013, Statistics and Computing.
[44] G. Malsiner‐Walli,et al. Comparing Spike and Slab Priors for Bayesian Variable Selection , 2016, 1812.07259.