A strong restricted isometry property, with an application to phaseless compressed sensing

The many variants of the restricted isometry property (RIP) have proven to be crucial theoretical tools in the fields of compressed sensing and matrix completion. The study of extending compressed sensing to accommodate phaseless measurements naturally motivates a strong notion of restricted isometry property (SRIP), which we develop in this paper. We show that if $A \in \mathbb{R}^{m\times n}$ satisfies SRIP and phaseless measurements $|Ax_0| = b$ are observed about a $k$-sparse signal $x_0 \in \mathbb{R}^n$, then minimizing the $\ell_1$ norm subject to $ |Ax| = b $ recovers $x_0$ up to multiplication by a global sign. Moreover, we establish that the SRIP holds for the random Gaussian matrices typically used for standard compressed sensing, implying that phaseless compressed sensing is possible from $O(k \log (n/k))$ measurements with these matrices via $\ell_1$ minimization over $|Ax| = b$. Our analysis also yields an erasure robust version of the Johnson-Lindenstrauss Lemma.

[1]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[2]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[3]  Yonina C. Eldar,et al.  On conditions for uniqueness in sparse phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Sundeep Rangan,et al.  Compressive Phase Retrieval via Generalized Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[5]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[6]  A. Pinkus On L1-Approximation , 1989 .

[7]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[8]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[9]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[10]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[11]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[12]  Lei Tian,et al.  Compressive Phase Retrieval , 2011 .

[13]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[14]  C. Schütt,et al.  On the minimum of several random variables , 2006 .

[15]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[16]  Dustin G. Mixon,et al.  Near-optimal phase retrieval of sparse vectors , 2013, Optics & Photonics - Optical Engineering + Applications.

[17]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[18]  S. Mendelson,et al.  Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.

[19]  Cishen Zhang,et al.  Robust Compressive Phase Retrieval via L1 Minimization With Application to Image Reconstruction , 2013, ArXiv.

[20]  Zhiqiang Xu,et al.  Phase Retrieval for Sparse Signals , 2013, ArXiv.

[21]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[22]  Dustin G. Mixon,et al.  Numerically erasure-robust frames , 2012, 1202.4525.

[23]  Djalil Chafaï,et al.  Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .

[24]  Bernhard G. Bodmann,et al.  Stable phase retrieval with low-redundancy frames , 2013, Adv. Comput. Math..

[25]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[26]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[27]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2013, SIAM J. Imaging Sci..

[28]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[29]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[30]  M. Ledoux The concentration of measure phenomenon , 2001 .

[31]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[32]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[33]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[34]  Anru Zhang,et al.  Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices , 2013, IEEE Transactions on Information Theory.