Stable high temperature metamaterial emitters for thermophotovoltaic applications

We report a metamaterial design for a thermophotovoltaic (TPV) emitter. TPVs are similar to photovoltaic solar cells, but they convert heat to electricity instead of sunlight. The focus of this paper is on the emitter stage of the TPV system, which converts the heat into a spectral band which is easily absorbable by the TPV photodiode. The proposed structure consists of a platinum metallic element, an alumina dielectric spacer, and platinum grounding plane on a sapphire substrate. This perfect absorber based metamaterial emitter is shown to robustly operate at 600 °C. This temperature is high enough to enable TPV use for many industrial applications.

[1]  William L. Schaich,et al.  Narrow-band, tunable infrared emission from arrays of microstrip patches , 2008 .

[2]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[3]  Thomas Maier,et al.  Multispectral microbolometers for the midinfrared. , 2010, Optics letters.

[4]  J. Hao,et al.  Nearly total absorption of light and heat generation by plasmonic metamaterials , 2011 .

[5]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[6]  V. Veselago,et al.  Электродинамика веществ с одновременно отрицательными значениями ε и μ , 1967 .

[7]  Suresh Venkatesh,et al.  Experimental realization of a metamaterial detector focal plane array. , 2012, Physical review letters.

[8]  Min Qiu,et al.  Photothermal reshaping of gold nanoparticles in a plasmonic absorber. , 2011, Optics express.

[9]  Hiroo Yugami,et al.  Thermophotovoltaic generation with selective radiators based on tungsten surface gratings , 2004 .

[10]  Kwong-Kit Choi,et al.  Enhancement and suppression of thermal emission by a three-dimensional photonic crystal , 2000 .

[11]  Ivan Celanovic,et al.  Two-dimensional tungsten photonic crystals as selective thermal emitters , 2008 .

[12]  J. G. Fleming,et al.  All-metallic three-dimensional photonic crystals with a large infrared bandgap , 2002, Nature.

[13]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[14]  Chunlei Du,et al.  A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures , 2010 .

[15]  Ekmel Ozbay,et al.  Experimental verification of metamaterial based subwavelength microwave absorbers , 2010 .

[16]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[17]  M. F. Su,et al.  High-efficiency photonic crystal narrowband thermal emitters , 2010, OPTO.

[18]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[19]  J. Pendry,et al.  Low frequency plasmons in thin-wire structures , 1998 .

[20]  Min Yan,et al.  Metal–insulator–metal light absorber: a continuous structure , 2013 .

[21]  J. G. Fleming,et al.  Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation , 2003 .

[22]  T. Vandervelde,et al.  Comparison of Photonic-Crystal-Enhanced Thermophotovoltaic Devices With and Without a Resonant Cavity , 2012, Journal of Electronic Materials.

[23]  Cryogenic thermal simulator for testing low temperature thermophotovoltaic cellsa) , 2011 .

[24]  Y. X. Yeng,et al.  Recent developments in high-temperature photonic crystals for energy conversion , 2012 .

[25]  A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons , 2009 .

[26]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[27]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[28]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Marin Soljacić,et al.  Thermal emission and design in 2D-periodic metallic photonic crystal slabs. , 2006, Optics express.

[30]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[31]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[32]  Willie J Padilla,et al.  Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging , 2008, 0807.3390.

[33]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[34]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[35]  G. Kirchhoff,et al.  Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht , 1860 .

[36]  Dante F. DeMeo,et al.  Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermophotovoltaic applications , 2014 .

[37]  Irina Puscasu,et al.  Photonic crystal enhanced narrow-band infrared emitters , 2002 .

[38]  Minghao Qi,et al.  1D and 2D photonic crystals for thermophotovoltaic applications , 2004, SPIE Photonics Europe.

[39]  R. J. Bell,et al.  Equations linking different sets of optical properties for nonmagnetic materials. , 1985, Applied optics.

[40]  I. Celanovic,et al.  Two‐dimensional Tungsten Photonic Crystals as Thermophotovoltaic Selective Emitters , 2007 .