Optimal transport with Coulomb cost and the semiclassical limit of Density Functional Theory

We present some progress in the direction of determining the semiclassical limit of the Hoenberg-Kohn universal functional in Density Functional Theory for Coulomb systems. In particular we give a proof of the fact that for Bosonic systems with an arbitrary number of particles the limit is the multimarginal optimal transport problem with Coulomb cost and that the same holds for Fermionic systems with 2 or 3 particles. Comparisons with previous results are reported . The approach is based on some techniques from the optimal transportation theory.

[1]  Simone Di Marino,et al.  Multimarginal Optimal Transport Maps for One–dimensional Repulsive Costs , 2015, Canadian Journal of Mathematics.

[2]  Guillaume Carlier,et al.  On a Class of Multidimensional Optimal Transportation Problems , 2003 .

[3]  G. Buttazzo,et al.  Optimal-transport formulation of electronic density-functional theory , 2012, 1205.4514.

[4]  L. Pascale Optimal Transport with Coulomb cost. Approximation and duality , 2015, 1503.07063.

[5]  P. Gori-Giorgi,et al.  Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities , 2007, cond-mat/0701025.

[6]  Thierry Champion,et al.  Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs , 2016, 1608.08780.

[7]  Simone Di Marino,et al.  Equality between Monge and Kantorovich multimarginal problems with Coulomb cost , 2015 .

[8]  W. Gangbo,et al.  Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .

[9]  N. Ghoussoub,et al.  A Self‐Dual Polar Factorization for Vector Fields , 2011, 1101.4979.

[10]  P. Gori-Giorgi,et al.  Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry. , 2010, Physical chemistry chemical physics : PCCP.

[11]  M. Seidl Strong-interaction limit of density-functional theory , 1999 .

[12]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[13]  Andrea Braides Γ-convergence for beginners , 2002 .

[14]  H. Kellerer Duality theorems for marginal problems , 1984 .

[15]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[16]  Henri Heinich,et al.  Problème de Monge pour probabilités , 2002 .

[17]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[18]  Mathieu Lewin,et al.  Semi-classical limit of the Levy-Lieb functional in Density Functional Theory , 2017, 1706.02199.

[19]  Guillaume Carlier,et al.  OPTIMAL TRANSPORTATION FOR THE DETERMINANT , 2006, math/0612142.

[20]  Claudia Klüppelberg,et al.  Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg–Kohn Functional , 2017, 1706.05676.

[21]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[22]  P. Gori-Giorgi,et al.  Density-functional theory for strongly interacting electrons. , 2009, Physical review letters.

[23]  Lin Lin,et al.  Kantorovich dual solution for strictly correlated electrons in atoms and molecules , 2012, 1210.7117.

[24]  Brendan Pass,et al.  Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem , 2010, SIAM J. Math. Anal..

[25]  Michael Seidl,et al.  Strictly correlated electrons in density-functional theory , 1999 .

[26]  Claudia Klüppelberg,et al.  N-density representability and the optimal transport limit of the Hohenberg-Kohn functional. , 2013, The Journal of chemical physics.

[27]  Walter Schachermayer,et al.  A General Duality Theorem for the Monge--Kantorovich Transport Problem , 2009, 0911.4347.

[28]  Brendan Pass,et al.  On the local structure of optimal measures in the multi-marginal optimal transportation problem , 2010, 1005.2162.

[29]  Elliott H. Lieb Density functionals for coulomb systems , 1983 .

[30]  Codina Cotar,et al.  Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.

[31]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.