A Consistent Nonparametric Test for Granger Non-Causality Based on the Transfer Entropy

To date, testing for Granger non-causality using kernel density-based nonparametric estimates of the transfer entropy has been hindered by the intractability of the asymptotic distribution of the estimators. We overcome this by shifting from the transfer entropy to its first-order Taylor expansion near the null hypothesis, which is also non-negative and zero if and only if Granger causality is absent. The estimated Taylor expansion can be expressed in terms of a U-statistic, demonstrating asymptotic normality. After studying its size and power properties numerically, the resulting test is illustrated empirically with applications to stock indices and exchange rates.

[1]  S. Bressler,et al.  Granger Causality: Basic Theory and Application to Neuroscience , 2006, q-bio/0608035.

[2]  D. Tjøstheim,et al.  Nonparametric tests of serial independence , 1993 .

[3]  Thomas M. Stoker,et al.  Optimal bandwidth choice for density-weighted averages , 1996 .

[4]  Viola Priesemann,et al.  Measuring Information-Transfer Delays , 2013, PloS one.

[5]  Anthony S. Tay,et al.  Multivariate Density Forecast Evaluation and Calibration In Financial Risk Management: High-Frequency Returns on Foreign Exchange , 1999, Review of Economics and Statistics.

[6]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[7]  O. Linton,et al.  Testing Conditional Independence Restrictions , 2014 .

[8]  Cees Diks,et al.  Nonparametric Tests for Independence , 2009, Encyclopedia of Complexity and Systems Science.

[9]  Steven L. Bressler,et al.  Wiener–Granger Causality: A well established methodology , 2011, NeuroImage.

[10]  Dominik Wied,et al.  Consistency of the kernel density estimator: a survey , 2012 .

[11]  A. Seth,et al.  Multivariate Granger causality and generalized variance. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[13]  H. White,et al.  Testing Conditional Independence Via Empirical Likelihood , 2014 .

[14]  H. White,et al.  A NONPARAMETRIC HELLINGER METRIC TEST FOR CONDITIONAL INDEPENDENCE , 2008, Econometric Theory.

[15]  Oliver D. Anderson,et al.  Forecasting in Business and Economics , 1981 .

[16]  Jim Malley,et al.  A non-parametric approach to non-linear causality testing , 1996 .

[17]  T. Bossomaier,et al.  Transfer entropy as a log-likelihood ratio. , 2012, Physical review letters.

[18]  Jianfeng Feng,et al.  Granger Causality: Theory and Applications , 2010 .

[19]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  Gerhard Keller,et al.  Rigorous statistical procedures for data from dynamical systems , 1986 .

[22]  Peter E. Rossi,et al.  Stock Prices and Volume , 1992 .

[23]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Tim Bollerslev,et al.  Trading Patterns and Prices in the Interbank Foreign Exchange Market , 1993 .

[25]  B. Hansen UNIFORM CONVERGENCE RATES FOR KERNEL ESTIMATION WITH DEPENDENT DATA , 2008, Econometric Theory.

[26]  M. Denker,et al.  On U-statistics and v. mise’ statistics for weakly dependent processes , 1983 .

[27]  Cees Diks,et al.  A new statistic and practical guidelines for nonparametric Granger causality testing , 2006 .

[28]  K. Hlavácková-Schindler,et al.  Causality detection based on information-theoretic approaches in time series analysis , 2007 .

[29]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[30]  P. Robinson Consistent Nonparametric Entropy-Based Testing , 1991 .

[31]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[32]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[33]  H. Stanley,et al.  Cross-correlations between volume change and price change , 2009, Proceedings of the National Academy of Sciences.

[34]  B. Pompe Measuring statistical dependences in a time series , 1993 .

[35]  C. Granger,et al.  USING THE MUTUAL INFORMATION COEFFICIENT TO IDENTIFY LAGS IN NONLINEAR MODELS , 1994 .

[36]  J. Rombouts,et al.  Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality , 2012 .

[37]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[38]  Yongmiao Hong,et al.  CHARACTERISTIC FUNCTION BASED TESTING FOR CONDITIONAL INDEPENDENCE: A NONPARAMETRIC REGRESSION APPROACH , 2017, Econometric Theory.

[39]  Jonathan M. Karpoff The Relation between Price Changes and Trading Volume: A Survey , 1987, Journal of Financial and Quantitative Analysis.

[40]  E. Maasoumi,et al.  A Dependence Metric for Possibly Nonlinear Processes , 2004 .

[41]  Marcin Wolski,et al.  Nonlinear Granger Causality: Guidelines for Multivariate Analysis , 2013 .

[42]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[43]  C. Diks,et al.  Nonlinear Granger Causality: Guidelines for Multivariate Analysis: MULTIVARIATE NONLINEAR GRANGER CAUSALITY , 2016 .

[44]  Craig Hiemstra,et al.  Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation , 1994 .

[45]  Dimitris Kugiumtzis,et al.  Detecting Causality in Non-stationary Time Series Using Partial Symbolic Transfer Entropy: Evidence in Financial Data , 2016 .

[46]  Hao Fang,et al.  Transfer Entropy for Nonparametric Granger Causality Detection: An Evaluation of Different Resampling Methods , 2017, Entropy.

[47]  Ron Kaniel,et al.  The High Volume Return Premium , 2001 .

[48]  James G. MacKinnon,et al.  Graphical Methods for Investigating the Size and Power of Hypothesis Tests , 1998 .

[49]  V. Alekseev Estimation of a probability density function and its derivatives , 1972 .

[50]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[51]  Olivier J. J. Michel,et al.  The relation between Granger causality and directed information theory: a review , 2012, Entropy.

[52]  H. White,et al.  ASYMPTOTIC DISTRIBUTION THEORY FOR NONPARAMETRIC ENTROPY MEASURES OF SERIAL DEPENDENCE , 2005 .

[53]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[54]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[55]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .