Interfacial chemical bonding-mediated ionic resistive switching

[1]  L. Wong,et al.  Local phenomena at grain boundaries: An alternative approach to grasp the role of oxygen vacancies in metallization of VO2 , 2018, Journal of Materiomics.

[2]  Young Jae Kwon,et al.  A study of the transition between the non-polar and bipolar resistance switching mechanisms in the TiN/TiO2/Al memory. , 2016, Nanoscale.

[3]  Wilfried Vandervorst,et al.  Scalability of valence change memory: From devices to tip-induced filaments , 2016 .

[4]  Chun-Wei Huang,et al.  Switching Kinetic of VCM‐Based Memristor: Evolution and Positioning of Nanofilament , 2015, Advanced materials.

[5]  M. Lanza,et al.  In Situ Demonstration of the Link Between Mechanical Strength and Resistive Switching in Resistive Random‐Access Memories , 2015 .

[6]  Tae Hyung Park,et al.  Dual Conical Conducting Filament Model in Resistance Switching TiO2 Thin Films , 2015, Scientific Reports.

[7]  Wenhao Chen,et al.  In Situ TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO2 , 2014, Microscopy and Microanalysis.

[8]  Chengqing Hu,et al.  Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon. , 2014, Nano letters.

[9]  Wilfried Vandervorst,et al.  Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. , 2014, Nano letters.

[10]  Yuchao Yang,et al.  Nanoscale resistive switching devices: mechanisms and modeling. , 2013, Nanoscale.

[11]  K. Fröhlich TiO2-based structures for nanoscale memory applications , 2013 .

[12]  Lih-Juann Chen,et al.  Dynamic evolution of conducting nanofilament in resistive switching memories. , 2013, Nano letters.

[13]  C. Zhang,et al.  The Study of Au/TiO2/Au Resistive Switching Memory with Crosspoint Structure , 2013 .

[14]  M. Lanza,et al.  Resistive switching in hafnium dioxide layers: Local phenomenon at grain boundaries , 2012 .

[15]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[16]  Cheol Seong Hwang,et al.  Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell , 2012, Nanotechnology.

[17]  Thomas Mikolajick,et al.  Metal oxide memories based on thermochemical and valence change mechanisms , 2012 .

[18]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[19]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.

[20]  C. Hwang,et al.  Resistive switching memory: observations with scanning probe microscopy. , 2011, Nanoscale.

[21]  J. Yang,et al.  Metal/TiO2 interfaces for memristive switches , 2011 .

[22]  Yi Cui,et al.  One nanometer resolution electrical probe via atomic metal filament formation. , 2011, Nano letters.

[23]  R. Dittmann,et al.  Coexistence of Filamentary and Homogeneous Resistive Switching in Fe‐Doped SrTiO3 Thin‐Film Memristive Devices , 2010, Advanced materials.

[24]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[25]  J. Shapter,et al.  Adhesion of chemically and electrostatically bound gold nanoparticles to a self-assembled silane monolayer investigated by atomic force volume spectroscopy , 2009 .

[26]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[27]  C. Hwang,et al.  The conical shape filament growth model in unipolar resistance switching of TiO2 thin film , 2009 .

[28]  V. Lemanov,et al.  BIPOLAR RESISTIVE SWITCHING IN Au/TiO2/Pt THIN FILM STRUCTURES , 2008 .

[29]  V. Lemanov,et al.  Resistive switching in Au/TiO2/Pt thin film structures on silicon , 2008 .

[30]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[31]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[32]  F. Mittendorfer,et al.  Platinum-group and noble metals under oxidizing conditions , 2008 .

[33]  Nicola Marzari,et al.  Surface energies, work functions, and surface relaxations of low index metallic surfaces from first principles , 2008, 0801.1077.

[34]  G. Dujardin,et al.  Active drift compensation applied to nanorod manipulation with an atomic force microscope. , 2007, The Review of scientific instruments.

[35]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[36]  W. Pompe,et al.  Density functional theory study of platinum oxides: From infinite crystals to nanoscopic particles , 2007 .

[37]  T. Jacob Theoretical investigations on the potential-induced formation of Pt-oxide surfaces , 2007 .

[38]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[39]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[40]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[41]  F. Prinz,et al.  Geometric artefact suppressed surface potential measurements , 2006 .

[42]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[43]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[44]  N. Browning,et al.  Atomic Scale Characterization of the Pt/TiO2; Interface , 2004, Microscopy and Microanalysis.

[45]  R. Stanley Williams,et al.  Direct Observation of Nanoscale Switching Centers in Metal/Molecule/Metal Structures , 2004 .

[46]  A. Riul,et al.  Mapping of adhesion forces on soil minerals in air and water by atomic force spectroscopy (AFS) , 2003 .

[47]  Thorsten Hugel,et al.  The Study of Molecular Interactions by AFM Force Spectroscopy. , 2002 .

[48]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[52]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[53]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[54]  황철성,et al.  Nanofilamentary resistive switching in binary oxide system , 2011 .

[55]  W. Jhe,et al.  Atomic force microscopy and spectroscopy , 2007 .

[56]  Masaya Uchida,et al.  Pr0.5Sr0.5CoO3の温度変化と電子線照射により引起された磁区構造の変化 , 2005 .

[57]  H. Abruña,et al.  Electrochemically Controlled Adhesion in Atomic Force Spectroscopy , 1996 .

[58]  Lieng-Huang Lee,et al.  Fundamentals of adhesion , 1991 .