A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns

This paper develops the regime classification algorithm and applies it within a fully-fledged pairs trading framework on minute-by-minute data of the S&P 500 constituents from 1998 to 2015. Specifically, the highly flexible algorithm automatically determines the number of regimes for any stochastic process and provides a complete set of parameter estimates. We demonstrate its performance in a simulation study—the algorithm achieves promising results for the general class of Lévy-driven Ornstein–Uhlenbeck processes with regime switches. In our empirical back-testing study, we apply our regime classification algorithm to propose a high-frequency pair selection and trading strategy. The results show statistically and economically significant returns with an annualized Sharpe ratio of 3.92 after transaction costs—results remain stable even in recent years. We compare our strategy with existing quantitative trading frameworks and find its results to be superior in terms of risk and return characteristics. The algorithm takes full advantage of its flexibility and identifies various regime patterns over time that are well-documented in the literature.

[1]  Steven Kou,et al.  Jumps in Equity Index Returns Before and During the Recent Financial Crisis: A Bayesian Analysis , 2017, Manag. Sci..

[2]  E. Fama,et al.  A Five-Factor Asset Pricing Model , 2014 .

[3]  Johannes Stübinger,et al.  Pairs trading with a mean-reverting jump–diffusion model on high-frequency data , 2018 .

[4]  Andrew Ang,et al.  International Asset Allocation With Regime Shifts , 2002 .

[5]  R. Faff,et al.  A New Approach to Modeling and Estimation for Pairs Trading , 2006 .

[6]  Sühan Altay,et al.  Pairs Trading Under Drift Uncertainty and Risk Penalization , 2017, International Journal of Theoretical and Applied Finance.

[7]  Cyrus A. Ramezani,et al.  Maximum Likelihood Estimation of Asymmetric Jump-Diffusion Processes: Application to Security Prices , 1998 .

[8]  Á. Cartea,et al.  Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality , 2005 .

[9]  S. Basov Simulation and Inference for Stochastic Differential Equations: With R Examples , 2010 .

[10]  Thomas Fischer,et al.  Machine learning for time series forecasting - a simulation study , 2018 .

[11]  J. Stübinger,et al.  Optimal trading strategies for Lévy-driven Ornstein–Uhlenbeck processes , 2019, Applied Economics.

[12]  Robert J. Elliott,et al.  Estimating a regime switching pairs trading model , 2018 .

[13]  R. Faff,et al.  Does Simple Pairs Trading Still Work? , 2010 .

[14]  Ahmet Göncü,et al.  A stochastic model for commodity pairs trading , 2016 .

[15]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[16]  W. K. Bertram Analytic Solutions for Optimal Statistical Arbitrage Trading , 2009 .

[17]  H. Thompson,et al.  High-Frequency Financial Econometrics , 2016 .

[18]  Jun Cai A Markov Model of Switching-Regime ARCH , 1994 .

[19]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[20]  Mathematisch-Naturwissenschaftlichen Fakultät,et al.  Drift estimation for jump diusions: time-continuous and high-frequency observations , 2012 .

[21]  Feng Li,et al.  Empirical Investigation of an Equity Pairs Trading Strategy , 2017, Manag. Sci..

[22]  Stig Larsson,et al.  Optimal closing of a pair trade with a model containing jumps , 2010, 1004.2947.

[23]  Julien Chevallier,et al.  On the estimation of regime-switching Lévy models , 2016 .

[24]  Pedro P. Mota,et al.  On a continuous time stock price model with regime switching, delay, and threshold , 2014 .

[25]  Yuma Uehara,et al.  Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models , 2017, Stochastic Processes and their Applications.

[26]  George J. Miao High Frequency and Dynamic Pairs Trading Based on Statistical Arbitrage Using a Two-Stage Correlation and Cointegration Approach , 2014 .

[27]  Rama Cont,et al.  Nonparametric tests for pathwise properties of semimartingales , 2011, 1104.4429.

[28]  Johannes Stübinger,et al.  Statistical Arbitrage Pairs Trading with High-frequency Data , 2017 .

[29]  G. Vidyamurthy Pairs Trading: Quantitative Methods and Analysis , 2004 .

[30]  J. Bouchaud,et al.  Leverage effect in financial markets: the retarded volatility model. , 2001, Physical review letters.

[31]  Pierre Giot,et al.  Market Models: A Guide to Financial Data Analysis , 2003 .

[32]  George Papanicolaou,et al.  Risk Control of Mean-Reversion Time in Statistical Arbitrage , 2017, Risk and Decision Analysis.

[33]  W. K. Bertram,et al.  Optimal Trading Strategies for Ito Diffusion Processes , 2009 .

[34]  W. P. Malcolm,et al.  Pairs trading , 2005 .

[35]  Michael Grottke,et al.  Exploiting social media with higher-order Factorization Machines: statistical arbitrage on high-frequency data of the S&P 500 , 2018, Quantitative Finance.

[36]  Athanasios A. Pantelous,et al.  Forecasting and trading high frequency volatility on large indices , 2018 .

[37]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[38]  Johannes Stübinger,et al.  Non-linear dependence modelling with bivariate copulas: statistical arbitrage pairs trading on the S&P 100 , 2017 .

[39]  Chi-Guhn Lee,et al.  Pairs trading: optimal thresholds and profitability , 2014 .

[40]  Shiu‐Sheng Chen Predicting the Bear Stock Market: Macroeconomic Variables as Leading Indicators , 2009 .

[41]  Sebastian Jaimungal,et al.  Trading Cointegrated Assets with Price Impact , 2015 .

[42]  R. Cont Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models. , 2005 .

[43]  Huafeng (Jason) Chen,et al.  Empirical Investigation of an Equity Pairs Trading Strategy , 2017 .

[44]  Christina Malamateniou,et al.  Quantitative Methods and Analysis , 2020 .

[45]  Henrik Madsen,et al.  Regime-switching modelling of the fluctuations of offshore wind generation , 2008 .

[46]  Kuang-Liang Chang,et al.  Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model , 2009 .

[47]  Daniel F. Waggoner,et al.  Sources of Macroeconomic Fluctuations: A Regime-Switching DSGE Approach , 2010 .

[48]  Cecilia Mancini Non-parametric Threshold Estimationfor Models with Stochastic DiffusionCoefficient and Jumps , 2006 .

[49]  Roland Mestel,et al.  A Regime-Switching Relative Value Arbitrage Rule , 2008 .

[50]  Daniel F. Waggoner,et al.  Sources of macroeconomic fluctuations: A regime-switching DSGE approach: Sources of macroeconomic fluctuations , 2011 .

[51]  Ahmet Goncu,et al.  A Comparative Goodness-of-Fit Analysis of Distributions of Some Lévy Processes and Heston Model to Stock Index Returns , 2015 .

[52]  Chia-Chien Chang,et al.  Pairs trading: The performance of a stochastic spread model with regime switching-evidence from the S&P 500 , 2016 .

[53]  J. Bouchaud,et al.  Leverage Effect in Financial Markets , 2001 .

[54]  Johannes Stübinger,et al.  Statistical arbitrage with optimal causal paths on high-frequency data of the S&P 500 , 2018, Quantitative Finance.

[55]  Hilmar Mai,et al.  Efficient maximum likelihood estimation for Lévy-driven Ornstein–Uhlenbeck processes , 2014, 1403.2954.

[56]  Raphael Yan,et al.  Dynamic Pairs Trading Using the Stochastic Control Approach , 2012 .

[57]  Emrah Şener,et al.  Investigation of Stochastic Pairs Trading Strategies Under Different Volatility Regimes , 2010 .

[58]  Ahmet Goncu,et al.  Statistical Arbitrage with Pairs Trading , 2016 .

[59]  Lan Wu,et al.  Analytic value function for optimal regime-switching pairs trading rules , 2018 .

[60]  M. Avellaneda,et al.  Statistical arbitrage in the US equities market , 2010 .

[61]  T. Bollerslev,et al.  Leverage and Volatility Feedback Effects in High-Frequency Data , 2005 .

[62]  Mark Cummins,et al.  Quantitative spread trading on crude oil and refined products markets , 2011 .

[63]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[64]  Eric Jondeau,et al.  Estimating the Price Impact of Trades in an High-Frequency Microstructure Model with Jumps , 2015 .

[65]  Marco Bee,et al.  An Improved Pairs Trading Strategy Based on Switching Regime Volatility , 2015 .

[66]  Hossein Rad,et al.  The Profitability of Pairs Trading Strategies: Distance, Cointegration, and Copula Methods , 2015 .

[67]  Marcel Urner Simulation And Inference For Stochastic Differential Equations With R Examples , 2016 .

[68]  M. Dalvi,et al.  Day of the Week Effect and Market Efficiency - Evidence from Indian Equity Market Using High Frequency Data of National Stock Exchange , 2004 .

[69]  Manuel L. Esquível,et al.  On Some Auto-Induced Regime Switching Double-Threshold Glued Diffusions , 2014 .

[70]  William N. Goetzmann,et al.  Pairs Trading: Performance of a Relative Value Arbitrage Rule , 1998 .

[71]  Mary R. Hardy,et al.  A Regime-Switching Model of Long-Term Stock Returns , 2001 .

[72]  James D. Hamilton Regime switching models , 2010 .

[73]  A. Tourin,et al.  Model-based pairs trading in the bitcoin markets , 2017 .

[74]  M. Esquível,et al.  Model selection for stock prices data , 2016 .

[75]  Ashish Das,et al.  Variance‐ratio Statistics and High‐frequency Data: Testing for Changes in Intraday Volatility Patterns , 2001 .

[76]  Hélyette Geman,et al.  Intraday pairs trading strategies on high frequency data: the case of oil companies , 2017 .

[77]  Stephen Gray,et al.  Regime-switching and interest rates in the European monetary system , 2000 .

[78]  Hiroki Masuda,et al.  Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes , 2010 .

[79]  C. Krauss,et al.  Statistical arbitrage with vine copulas , 2018 .

[80]  Yifan Li,et al.  High-Frequency Volatility Modelling: A Markov-Switching Autoregressive Conditional Intensity Model , 2016 .