Single-layer tensor network study of the Heisenberg model with chiral interactions on a kagome lattice

We study the antiferromagnetic kagome Heisenberg model with additional scalar-chiral interaction by using the infinite projected entangled-pair state (iPEPS) ansatz. We discuss in detail the implementation of optimization algorithm in the framework of the single-layer tensor network based on the corner-transfer matrix technique. Our benchmark based on the full-update algorithm shows that the single-layer algorithm is stable, which leads to the same level of accuracy as the double-layer ansatz but with much less computation time. We further apply this algorithm to study the nature of the kagome Heisenberg model with a scalar-chiral interaction by computing the bond dimension scaling of magnetization, bond energy difference, chiral order parameter and correlation length. In particular, we find that for strong chiral coupling the correlation length, which is extracted from the transfer matrix, saturates to a finite value for large bond dimension, representing a gapped spin-liquid state. Further comparison with density matrix renormalization group results supports that our iPEPS faithfully represents the time-reversal symmetry breaking chiral state. Our iPEPS simulation results shed new light on constructing PEPS for describing gapped chiral topological states.

[1]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[2]  R. Haghshenas,et al.  U (1 ) -symmetric infinite projected entangled-pair states study of the spin-1/2 square J 1 -J 2 Heisenberg model , 2017, 1711.07584.

[3]  Read,et al.  Spin-Peierls, valence-bond solid, and Néel ground states of low-dimensional quantum antiferromagnets. , 1990, Physical review. B, Condensed matter.

[4]  X. Wen THEORY OF THE EDGE STATES IN FRACTIONAL QUANTUM HALL EFFECTS , 1992 .

[5]  M. Zaletel,et al.  Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model , 2016, 1611.06238.

[6]  T. Han,et al.  Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet , 2015, Science.

[7]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[8]  Didier Poilblanc,et al.  Non-Abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study , 2018, Physical Review B.

[9]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[10]  B. Bauer,et al.  Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator , 2014, Nature Communications.

[11]  D. Nocera,et al.  Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. , 2006, Physical review letters.

[12]  Read,et al.  Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. , 1989, Physical review letters.

[13]  Bela Bauer,et al.  Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states , 2009, 0912.0646.

[14]  S. Sorella,et al.  Gapless spin-liquid phase in the kagome spin-(1)/(2) Heisenberg antiferromagnet , 2012, 1209.1858.

[15]  M. Troyer,et al.  Stripes in the two-dimensional t-J model with infinite projected entangled-pair states , 2011, 1104.5463.

[16]  J. Cirac,et al.  Chiral projected entangled-pair state with topological order. , 2014, Physical review letters.

[17]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[18]  J. Ignacio Cirac,et al.  Unifying projected entangled pair state contractions , 2013, 1311.6696.

[19]  A. Sandvik Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model , 1997, cond-mat/9707123.

[20]  D. Poilblanc Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states , 2017, 1707.07844.

[21]  Simeng Yan,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.

[22]  Philippe Corboz,et al.  Tensor network study of the Shastry-Sutherland model in zero magnetic field , 2012, 1212.2983.

[23]  Y. Kao,et al.  Uni10: an open-source library for tensor network algorithms , 2015 .

[24]  Wen,et al.  Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. , 1990, Physical review. B, Condensed matter.

[25]  J. Ignacio Cirac,et al.  Chiral topological spin liquids with projected entangled pair states , 2015, 1504.05236.

[26]  J. Cirac,et al.  Topological and entanglement properties of resonating valence bond wave functions , 2012, 1202.0947.

[27]  D. Sheng,et al.  Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model. , 2013, Physical review letters.

[28]  Ying Ran,et al.  Projected-wave-function study of the spin-1/2 Heisenberg model on the Kagomé lattice. , 2006, Physical review letters.

[29]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[30]  A. Lauchli,et al.  Nature of chiral spin liquids on the kagome lattice , 2015, 1503.03389.

[31]  J. Chen,et al.  Optimized contraction scheme for tensor-network states , 2017, 1705.08577.

[32]  Accurate computation of low-temperature thermodynamics for quantum spin chains , 2012, 1203.4848.

[33]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[34]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[35]  Matthias Troyer,et al.  Competing states in the t-J model: uniform D-wave state versus stripe state. , 2014, Physical review letters.

[36]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[37]  D. Tsui,et al.  The Quantized Hall Effect , 1983, Science.

[38]  F. Becca,et al.  Projected wave function study of Z 2 spin liquids on the kagome lattice for the spin- 1 2 quantum Heisenberg antiferromagnet , 2011, 1105.0341.

[39]  J I Cirac,et al.  Projected entangled-pair states can describe chiral topological states. , 2013, Physical review letters.

[40]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[41]  P. Corboz Improved energy extrapolation with infinite projected entangled-pair states applied to the two-dimensional Hubbard model , 2015, 1508.04003.

[42]  P. Corboz,et al.  Finite Correlation Length Scaling with Infinite Projected Entangled-Pair States , 2018, Physical Review X.

[43]  Read,et al.  Large-N expansion for frustrated quantum antiferromagnets. , 1991, Physical review letters.

[44]  X. Wen Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons , 2004 .

[45]  R. Haghshenas,et al.  Quantum phase diagram of spin-1 J1−J2 Heisenberg model on the square lattice: An infinite projected entangled-pair state and density matrix renormalization group study , 2018, Physical Review B.

[46]  Wen,et al.  Gapless boundary excitations in the quantum Hall states and in the chiral spin states. , 1991, Physical review. B, Condensed matter.

[47]  Matthias Troyer,et al.  Three-sublattice order in the SU(3) Heisenberg model on the square and triangular lattice , 2011, 1112.1100.

[48]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[49]  R. Laughlin,et al.  Equivalence of the resonating-valence-bond and fractional quantum Hall states. , 1987, Physical review letters.

[50]  Hoang Duong Tuan,et al.  Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing , 2015, 1503.05345.

[51]  Sachdev,et al.  Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. , 1992, Physical review. B, Condensed matter.

[52]  Possible spin-liquid states on the triangular and kagomé lattices. , 1992, Physical review letters.

[53]  Zee,et al.  Chiral spin states and superconductivity. , 1989, Physical review. B, Condensed matter.

[54]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[55]  J. Cirac,et al.  Resonating valence bond states in the PEPS formalism , 2012, 1203.4816.

[56]  M. Troyer,et al.  Probing the stability of the spin liquid phases in the Kitaev-Heisenberg model using tensor network algorithms , 2014, 1408.4020.

[57]  Wei Zhu,et al.  Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model , 2013, Scientific Reports.

[58]  D. Huse,et al.  Ground state of the spin-1/2 kagome-lattice Heisenberg antiferromagnet , 2007, 0707.0892.

[59]  Ying-Jer Kao,et al.  Gapless spin liquid in the kagome Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions , 2018, Physical Review B.

[60]  J Chen,et al.  Gapless Spin-Liquid Ground State in the S=1/2 Kagome Antiferromagnet. , 2016, Physical review letters.

[61]  M. Hastings Dirac structure, RVB, and Goldstone modes in thekagoméantiferromagnet , 2000 .

[62]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[63]  R. Orús,et al.  Infinite projected entangled-pair state algorithm for ruby and triangle-honeycomb lattices , 2017, 1711.04798.

[64]  F. Becca,et al.  Vanishing spin gap in a competing spin-liquid phase in the kagome Heisenberg antiferromagnet , 2013, 1311.5038.

[65]  N. Read,et al.  Tensor network trial states for chiral topological phases in two dimensions , 2013, 1307.7726.