Emission-economic dispatch of thermal power generation units in the presence of hybrid electric vehicles and correlated wind power plants

With the integration of plug-in hybrid electric vehicles (PHEVs) and renewable energy resources into the power system, the environmental-economic dispatch of conventional power generation units takes new dimensions due to several ineluctable uncertain factors. This study presents a probabilistic optimisation framework for the emission, economic dispatch of thermal power generation units, considering the stochastic charging demand of PHEVs, intermittent wind power generation and uncertain load demand. To characterise the uncertainty in the output variables, the point estimate method and Nataf transformation are employed, considering the correlation between wind power plants. To find Pareto optimal solutions concerning minimisation of the emission and fuel cost, heuristic fitness sharing mechanisms and a meta-heuristic algorithm are proposed. Monte Carlo simulation together with state-of-the-art optimisation techniques (NSGA-II and SPEA-2) are employed in a quantitative performance appraisal to scrutinise the effectiveness of the proposed method in the uncertainty quantification and multi-objective optimisation.

[1]  A. Feliachi,et al.  PAT: A Power Analysis Toolbox for MATLAB/Simulink , 2002, IEEE Power Engineering Review.

[2]  Armin Ebrahimi Milani,et al.  A new probabilistic approach for distribution network reconfiguration: Applicability to real networks , 2013, Math. Comput. Model..

[3]  Bowen Zhou,et al.  An electric vehicle dispatch module for demand-side energy participation , 2016 .

[4]  A. Selvakumar,et al.  A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems , 2007, IEEE Transactions on Power Systems.

[5]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[6]  Yue Yuan,et al.  Modeling of Load Demand Due to EV Battery Charging in Distribution Systems , 2011, IEEE Transactions on Power Systems.

[7]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[8]  Zwe-Lee Gaing Closure to "Discussion of 'Particle swarm optimization to solving the economic dispatch considering the generator constraints'" , 2004 .

[9]  Samik Raychaudhuri,et al.  Introduction to Monte Carlo simulation , 2008, 2008 Winter Simulation Conference.

[10]  H. Hong An efficient point estimate method for probabilistic analysis , 1998 .

[11]  Malabika Basu,et al.  Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II , 2008 .

[12]  Taher Niknam,et al.  Multiobjective economic/emission dispatch by multiobjective θ-particle swarm optimisation , 2012 .

[13]  Antonio J. Conejo,et al.  Probabilistic power flow with correlated wind sources , 2010 .

[14]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[15]  S.T. Lee,et al.  Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion , 2004, IEEE Transactions on Power Systems.

[16]  Amin Gholami,et al.  Environmental/economic dispatch incorporating renewable energy sources and plug-in vehicles , 2014 .

[17]  Lixiang Li,et al.  CHAOTIC PARTICLE SWARM OPTIMIZATION FOR ECONOMIC DISPATCH CONSIDERING THE GENERATOR CONSTRAINTS , 2007 .

[18]  A. T. Johns,et al.  Environmental/economic dispatch using fuzzy logic controlled genetic algorithms , 1997 .

[19]  M. Haghifam,et al.  Adaptive multi-objective distribution network reconfiguration using multi-objective discrete particles swarm optimisation algorithm and graph theory , 2013 .

[20]  Zwe-Lee Gaing,et al.  Particle swarm optimization to solving the economic dispatch considering the generator constraints , 2003 .

[21]  Julio Usaola Probabilistic load flow with wind production uncertainty using cumulants and Cornish–Fisher expansion , 2009 .

[22]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[23]  N. S. Babu,et al.  Analytical solution for combined economic and emissions dispatch , 2008 .

[24]  A. Kiureghian,et al.  Multivariate distribution models with prescribed marginals and covariances , 1986 .

[25]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[26]  P. Attaviriyanupap,et al.  A fuzzy-optimization approach to dynamic economic dispatch considering uncertainties , 2004, IEEE Transactions on Power Systems.

[27]  Bijaya Ketan Panigrahi,et al.  Bacterial foraging optimisation: Nelder-Mead hybrid algorithm for economic load dispatch , 2008 .

[28]  J. Nanda,et al.  ECONOMIC-EMISSION LOAD DISPHTCH THROUGH GOAL PROGRAMMING TECHNIIJUES , 1988 .

[29]  Xiukai Yuan,et al.  Nataf transformation based point estimate method , 2008 .

[30]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[31]  Fangxing Li,et al.  Probabilistic LMP Forecasting Considering Load Uncertainty , 2009 .

[32]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..