Twenty Years of Time Series Econometrics in Ten Pictures

This review tells the story of the past 20 years of time series econometrics through ten pictures. These pictures illustrate six broad areas of progress in time series econometrics: estimation of dynamic causal effects; estimation of dynamic structural models with optimizing agents (specifically, dynamic stochastic equilibrium models); methods for exploiting information in "big data" that are specialized to economic time series; improved methods for forecasting and for monitoring the economy; tools for modeling time variation in economic relationships; and improved methods for statistical inference. Taken together, the pictures show how 20 years of research have improved our ability to undertake our professional responsibilities. These pictures also remind us of the close connection between econometric theory and the empirical problems that motivate the theory, and of how the best econometric theory tends to arise from practical empirical problems.

[1]  Karel Mertens,et al.  The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States: Reply to Jentsch and Lunsford , 2011, American Economic Review.

[2]  Francis X. Diebold,et al.  Real-Time Measurement of Business Conditions , 2007 .

[3]  Barbara Rossi,et al.  In-Sample Inference and Forecasting in Misspecified Factor Models , 2016 .

[4]  J. L. M. Olea,et al.  A Robust Test for Weak Instruments , 2013 .

[5]  Beth F. Ingram,et al.  A Bayesian approach to dynamic macroeconomics , 2000 .

[6]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[7]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[8]  Anna Mikusheva,et al.  Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models , 2015 .

[9]  Zhongjun Qu Inference in DSGE Models with Possible Weak Identi…cation , 2013 .

[10]  Nicholas M. Kiefer,et al.  Simple Robust Testing of Regression Hypotheses , 2000 .

[11]  Christopher Otrok Gauss programs for On Measuring the Welfare Costs of Business Cycles , 2001 .

[12]  Graham Elliott,et al.  On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots , 1998 .

[13]  L. Phaneuf,et al.  Monetary policy shocks:: Testing identification conditions under time-varying conditional volatility , 2004 .

[14]  Zhongjun Qu Inference in dynamic stochastic general equilibrium models with possible weak identification , 2014 .

[15]  Monika Piazzesi,et al.  The Fed and Interest Rates: A High-Frequency Identification , 2002 .

[16]  E. Ghysels,et al.  MIDAS Regressions: Further Results and New Directions , 2006 .

[17]  M. Pesaran,et al.  Theory and Practice of GVAR Modelling , 2016 .

[18]  R. Rigobón,et al.  Measuring the Reaction of Monetary Policy to the Stock Market , 2001 .

[19]  Sophocles Mavroeidis,et al.  Robust Inference in Structural Vars with Long-Run Restrictions , 2016 .

[20]  J. Stock,et al.  Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve , 2014 .

[21]  Sophocles Mavroeidis Weak Identification of Forward-Looking Models in Monetary Economics , 2004 .

[22]  Fabio Canova,et al.  Methods for Applied Macroeconomic Research , 2007 .

[23]  Kenneth N. Kuttner,et al.  Federal Reserve Bank of New York Staff Reports What Explains the Stock Market's Reaction to Federal Reserve Policy? What Explains the Stock Market's Reaction to Federal Reserve Policy? , 2003 .

[24]  James D. Hamilton,et al.  Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information , 2014 .

[25]  Helmut Lütkepohl,et al.  Identifying Structural Vector Autoregressions Via Changes in Volatility , 2012 .

[26]  C. Nelson,et al.  The Distribution of the Instrumental Variables Estimator and its T-Ratiowhen the Instrument is a Poor One , 1988 .

[27]  F. Smets,et al.  An estimated dynamic stochastic general equilibrium model of the euro area. NBB Working Paper Nr. 35 , 2002 .

[28]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[29]  D. Romer,et al.  Does Monetary Policy Matter? A New Test in the Spirit of Friedman and Schwartz , 1989, NBER Macroeconomics Annual.

[30]  Roberto Rigobon,et al.  Identification Through Heteroskedasticity , 2003, Review of Economics and Statistics.

[31]  J. Stock,et al.  Forecasting Output and Inflation: The Role of Asset Prices , 2001 .

[32]  Norman R. Swanson,et al.  Predictive Density Evaluation , 2005 .

[33]  I. Welch,et al.  A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II , 2004, SSRN Electronic Journal.

[34]  Frank Schorfheide,et al.  Inference for VARs Identified with Sign Restrictions , 2011, 1709.10196.

[35]  A. Timmermann,et al.  Economic Forecasting , 2007 .

[36]  Isaiah Andrews,et al.  Valid Two-Step Identification-Robust Confidence Sets for GMM , 2017, Review of Economics and Statistics.

[37]  Mark W. Watson,et al.  Generalized Shrinkage Methods for Forecasting Using Many Predictors , 2012 .

[38]  Jean Boivin,et al.  DSGE Models in a Data-Rich Environment , 2006 .

[39]  Christopher Otrok,et al.  On Measuring the Welfare Cost of Business Cycles , 2001 .

[40]  James D. Hamilton What is an Oil Shock? , 2000 .

[41]  Gabriele Fiorentini,et al.  Identification, Estimation And Testing Of Conditionally Heteroskedastic Factor Models , 2001 .

[42]  Mark W. Watson,et al.  Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics , 2016 .

[43]  C. Sims MACROECONOMICS AND REALITY , 1977 .

[44]  Mark W. Watson,et al.  Disentangling the Channels of the 2007-2009 Recession , 2012 .

[45]  Frank Schorfheide,et al.  Loss function‐based evaluation of DSGE models , 2000 .

[46]  M. Gertler,et al.  Monetary Policy Surprises, Credit Costs and Economic Activity , 2014 .

[47]  Andrew T. Levin,et al.  A Practitioner's Guide to Robust Covariance Matrix Estimation , 1996 .

[48]  John Knight,et al.  Oxford Bulletin of Economics and Statistics , 2006 .

[49]  Chang‐Jin Kim,et al.  Has the U.S. Economy Become More Stable? A Bayesian Approach Based on a Markov-Switching Model of the Business Cycle , 1999, Review of Economics and Statistics.

[50]  A. Pagan,et al.  The Econometrics of the New Keynesian Policy Model: Introduction , 2004 .

[51]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[52]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[53]  Margaret Mary McConnell,et al.  Output Fluctuations in the United States: What Has Changed Since the Early 1980s? , 1998 .

[54]  Gabriele Fiorentini,et al.  Identification, Estimation and Testing of Conditionally Heteroskedastic Factor Models , 2001 .

[55]  R. Rigobón,et al.  The Impact of Monetary Policy on Asset Prices , 2002 .

[56]  Jonathan H. Wright,et al.  Identifying the Effects of Monetary Policy Shocks on Exchange Rates Using High Frequency Data , 2002 .

[57]  D. Giannone,et al.  Now-Casting and the Real-time Data Flow , 2012, SSRN Electronic Journal.

[58]  T. Sargent,et al.  Measuring Price-Level Uncertainty and Instability in the United States, 1850–2012 , 2015, Review of Economics and Statistics.

[59]  David A. Jaeger,et al.  Problems with Instrumental Variables Estimation when the Correlation between the Instruments and the Endogenous Explanatory Variable is Weak , 1995 .

[60]  Mikkel Plagborg-Møller,et al.  Bayesian inference on structural impulse response functions , 2019, Quantitative Economics.

[61]  Carlo A. Favero,et al.  Monetary Policy Inertia: More a Fiction than a Fact? , 2009 .

[62]  Pablo A. Guerrón-Quintana,et al.  Bayesian Estimation of DSGE Models , 2012 .

[63]  W. Friedman The Harvard Economic Service and the Problems of Forecasting , 2009 .

[64]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[65]  V. Ramey,et al.  Macroeconomic Shocks and Their Propagation , 2016 .

[66]  A. Pagan,et al.  Sign Restrictions in Structural Vector Autoregressions: A Critical Review , 2010 .

[67]  Ulrich K. Müller,et al.  Measuring Uncertainty about Long-Run Predictions , 2016 .

[68]  R. Giacomini,et al.  Inference About Non-Identified SVARs , 2014 .

[69]  Lutz Kilian,et al.  Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy? , 2005, The Review of Economics and Statistics.

[70]  J. Bai,et al.  Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions , 2006 .

[71]  A. R. Pagan,et al.  Structural Models of the Liquidity Effect , 1998, Review of Economics and Statistics.

[72]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[73]  Massimiliano Marcellino,et al.  A Survey of Econometric Methods for Mixed-Frequency Data , 2013 .

[74]  Richard Startz,et al.  Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator , 1988 .

[75]  Glenn D. Rudebusch Do Measures of Monetary Policy in a VAR Make Sense , 1998 .

[76]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[77]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[78]  Frank Schorfheide,et al.  Solution and Estimation Methods for DSGE Models , 2015 .

[79]  J. Galí,et al.  Inflation Dynamics: A Structural Econometric Analysis , 1999 .

[80]  Jonathan H. Wright,et al.  GMM WITH WEAK IDENTIFICATION , 2000 .

[81]  H. Uhlig What are the Effects of Monetary Policy on Output? : Results from an Agnostic Identification Procedure , 2005 .

[82]  Filippo Altissimo,et al.  New Eurocoin: Tracking Economic Growth in Real Time , 2006, The Review of Economics and Statistics.

[83]  L. Hansen,et al.  Finite Sample Properties of Some Alternative Gmm Estimators , 2015 .

[84]  Serena Ng,et al.  Working Paper Series , 2019 .

[85]  Ulrich K. Müller HAC Corrections for Strongly Autocorrelated Time Series , 2014 .

[86]  L. Hurwicz,et al.  Measuring Business Cycles. , 1946 .

[87]  J. Stock,et al.  Evidence on Structural Instability in Macroeconomic Time Series Relations , 1994 .

[88]  Thomas J. Sargent,et al.  Two Models of Measurements and the Investment Accelerator , 1989, Journal of Political Economy.

[89]  James M. Nason,et al.  Identifying the New Keynesian Phillips Curve , 2005 .

[90]  Bruce D. Phelps A Comprehensive Look at the Empirical Performance of Equity Premium Prediction , 2009 .

[91]  P. Ireland A small, structural, quarterly model for monetary policy evaluation , 1997 .