Fundamentals of spherical parameterization for 3D meshes

Parameterization of 3D mesh data is important for many graphics applications, in particular for texture mapping, remeshing and morphing. Closed manifold genus-0 meshes are topologically equivalent to a sphere, hence this is the natural parameter domain for them. Parameterizing a triangle mesh onto the sphere means assigning a 3D position on the unit sphere to each of the mesh vertices, such that the spherical triangles induced by the mesh connectivity are not too distorted and do not overlap. Satisfying the non-overlapping requirement is the most difficult and critical component of this process. We describe a generalization of the method of barycentric coordinates for planar parameterization which solves the spherical parameterization problem, prove its correctness by establishing a connection to spectral graph theory and show how to compute these parameterizations.

[1]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[2]  W. T. Tutte How to Draw a Graph , 1963 .

[3]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[4]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[5]  Y. D. Verdière On a novel graph invariant and a planarity criterion , 1990 .

[6]  Yves Colin de Verdière,et al.  Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.

[7]  Yves Colin de Verdière,et al.  On a new graph invariant and a criterion for planarity , 1991, Graph Structure Theory.

[8]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[9]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[10]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[11]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[12]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[13]  Michael T. Goodrich,et al.  On the Complexity of Optimization Problems for 3-dimensional Convex Polyhedra and Decision Trees , 1997, Comput. Geom..

[14]  Ayellet Tal,et al.  Polyhedron realization for shape transformation , 1998, The Visual Computer.

[15]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[16]  L. Lovász,et al.  On the null space of a Colin de Verdière matrix , 1999 .

[17]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[18]  Hiromasa Suzuki,et al.  Metamorphosis of Arbitrary Triangular Meshes , 2000, IEEE Computer Graphics and Applications.

[19]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[20]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[21]  Marc Alexa Merging polyhedral shapes with scattered features , 2000, The Visual Computer.

[22]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[23]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[24]  László Lovász,et al.  Steinitz Representations of Polyhedra and the Colin de Verdière Number , 2001, J. Comb. Theory, Ser. B.

[25]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[26]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[27]  A. Sheffer Spanning tree seams for reducing parameterization distortion of triangulated surfaces , 2002, Proceedings SMI. Shape Modeling International 2002.

[28]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[29]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[30]  Yehuda Koren,et al.  On Spectral Graph Drawing , 2003, COCOON.

[31]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[32]  Nira Dyn,et al.  Robust Spherical Parameterization of Triangular Meshes , 2004, Computing.