Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations

The dense matter equation of state (EOS) determines neutron star (NS) structure but can be calculated reliably only up to 1-2 times nuclear saturation density, using accurate many-body methods that employ nuclear interactions from chiral effective field theory constrained by scattering data. In this work, we use physically motivated ansatzes for the speed of sound $c_S$ at high density to extend microscopic calculations of neutron-rich matter to the highest densities encountered in stable neutron star cores. We show how existing and expected astrophysical constraints on NS masses and radii from x-ray observations can constrain the speed of sound in the NS core. We confirm earlier expectations that $c_S$ is likely to violate the conformal limit of $c_S^2\leq c^2/3 $, possibly reaching values closer to the speed of light $c$ at a few times nuclear saturation density, independent of the nuclear Hamiltonian. If QCD obeys the conformal limit we conclude that the rapid increase of $c_S$ required to accommodate a $2 $ M$_\odot$ NS suggests a form of strongly interacting matter where a description in terms of nucleons will be unwieldy, even between 1-2 times nuclear saturation density. For typical NS with masses in the range $1.2-1.4~$ M$_\odot$ we find radii between $10-14$ km, and the smallest possible radius of a $1.4$ M$_{\odot}$ NS consistent with constraints from nuclear physics and observations is $8.4$ km. We also discuss how future observations could constrain the EOS and guide theoretical developments in nuclear physics.

[1]  A. Deller,et al.  A PARALLAX DISTANCE AND MASS ESTIMATE FOR THE TRANSITIONAL MILLISECOND PULSAR SYSTEM J1023+0038 , 2012, 1207.5670.

[2]  K. Schmidt,et al.  Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions , 2017, 1706.07668.

[3]  K. Hebeler,et al.  Chiral three-nucleon forces and neutron matter , 2009, 0911.0483.

[4]  N. Glendenning The hyperon composition of neutron stars , 1982 .

[5]  K. Schmidt,et al.  Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter. , 2015, Physical review letters.

[6]  Upper Limits Set by Causality on the Rotation and Mass of Uniformly Rotating Relativistic Stars , 1996, astro-ph/9608179.

[7]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[8]  S. Gandolfi,et al.  Connecting neutron star observations to three-body forces in neutron matter and to the nuclear symmetry energy. , 2011, Physical review letters.

[9]  M. Miller,et al.  THE CASE FOR PSR J1614–2230 AS A NICER TARGET , 2016, 1602.00312.

[10]  S. Gandolfi,et al.  The maximum mass and radius of neutron stars and the nuclear symmetry energy , 2011, 1101.1921.

[11]  I. Tews Spectrum of shear modes in the neutron-star crust: Estimating the nuclear-physics uncertainties , 2016, 1607.06998.

[12]  C. Horowitz,et al.  Coupled-cluster calculations of nucleonic matter , 2013, 1311.2925.

[13]  P. Freire,et al.  H E ] 8 M ar 2 01 6 Masses , Radii , and Equation of State of Neutron Stars , 2016 .

[14]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[15]  C. Hoyos,et al.  Stiff phases in strongly coupled gauge theories with holographic duals , 2017, 1707.00521.

[16]  F. Gulminelli,et al.  The equation of state for dense nucleonic matter from a meta-modeling (II): predictions for neutron stars properties , 2017, 1708.06895.

[17]  Bounds on the speed of sound in dense matter, and neutron star structure , 2017 .

[18]  S. Gandolfi,et al.  Neutron Matter from Low to High Density , 2015, 1501.05675.

[19]  Luciano Rezzolla,et al.  New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. , 2018, Physical review letters.

[20]  C. Moustakidis,et al.  Speed of sound bounds and neutron star structure , 2016 .

[21]  J. Lattimer,et al.  Ultimate energy density of observable cold baryonic matter. , 2004, Physical review letters.

[22]  A. Steiner,et al.  Sound velocity bound and neutron stars. , 2014, Physical review letters.

[23]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[24]  E. Hungerford,et al.  Strangeness nuclear physics , 2000, 1605.00557.

[25]  R. Machleidt,et al.  Toward order-by-order calculations of the nuclear and neutron matter equations of state in chiral effective field theory , 2014, 1411.0136.

[26]  A. Vuorinen,et al.  Neutron star structure from QCD , 2015, 1508.05019.

[27]  Abhinav Nellore,et al.  Bound on the speed of sound from holography , 2009, 0905.0903.

[28]  S. Gandolfi,et al.  Quantum Monte Carlo calculations with chiral effective field theory interactions. , 2013, Physical review letters.

[29]  A. Schwenk,et al.  Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory. , 2012, Physical review letters.

[30]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[31]  Ihep,et al.  Constraining the mass and radius of neutron stars in globular clusters , 2017, 1709.05013.

[32]  Regulator Artifacts in Uniform Matter for Chiral Interactions , 2016, 1602.08038.

[33]  D. Psaltis,et al.  FROM NEUTRON STAR OBSERVABLES TO THE EQUATION OF STATE. I. AN OPTIMAL PARAMETRIZATION , 2016, 1605.03591.

[34]  S. Gandolfi,et al.  Hyperon puzzle: hints from quantum Monte Carlo calculations. , 2014, Physical review letters.

[35]  A. Schwenk,et al.  Microscopic calculations and energy expansions for neutron-rich matter , 2013, 1310.5627.

[36]  A. Schwope,et al.  The compactness of the isolated neutron star RX J0720.4−3125 , 2017, 1702.07635.

[37]  Z. Fodor,et al.  QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ2 , 2012, 1204.6710.

[38]  E. Epelbaum,et al.  Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order , 2014, The European Physical Journal A.

[39]  G. Burgio,et al.  Constraining and applying a generic high-density equation of state , 2015, 1501.07902.

[40]  J. Alsing,et al.  Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state , 2017, 1709.07889.

[41]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[42]  S. Gandolfi,et al.  Quantum Monte Carlo calculations of neutron matter with chiral three-body forces , 2015, 1507.05561.

[43]  A. Bulgac,et al.  Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory. , 2014, Physical review letters.

[44]  P. Romatschke,et al.  Cold quark matter , 2009, 0912.1856.

[45]  A. Schwenk,et al.  Neutron matter from chiral effective field theory interactions , 2013, 1304.2212.

[46]  R. Foster,et al.  The neutron star interior composition explorer (NICER): mission definition , 2014, Astronomical Telescopes and Instrumentation.

[47]  M. Alford,et al.  Characteristics of hybrid compact stars with a sharp hadron-quark interface , 2015, 1508.01261.

[48]  A. Schwenk,et al.  Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials , 2017, 1708.03194.

[49]  M. Freunek,et al.  Local chiral effective field theory interactions and quantum Monte Carlo applications , 2014, 1406.0454.

[50]  Y. Lim,et al.  Neutron Star Tidal Deformabilities Constrained by Nuclear Theory and Experiment. , 2018, Physical review letters.

[51]  A. Schwenk,et al.  Neutron matter from chiral two- and three-nucleon calculations up to N$^3$LO , 2016, 1608.05615.

[52]  M. Prakash,et al.  Generic conditions for stable hybrid stars , 2013, 1302.4732.

[53]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[54]  M. Bailes,et al.  Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array , 2015, 1510.04434.

[55]  A. Vuorinen,et al.  Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. , 2017, Physical review letters.

[56]  J. Menendez,et al.  Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter , 2015, 1508.06893.

[57]  S. Gandolfi,et al.  Using Neutron Star Observations to Determine Crust Thicknesses, Moments of Inertia, and Tidal Deformabilities , 2014, 1403.7546.

[58]  N. Kaiser,et al.  Equation of state of nuclear and neutron matter at third-order in perturbation theory from chiral effective field theory , 2016, 1612.04309.

[59]  K. Hebeler,et al.  EQUATION OF STATE AND NEUTRON STAR PROPERTIES CONSTRAINED BY NUCLEAR PHYSICS AND OBSERVATION , 2013, 1303.4662.

[60]  C. Hoyos,et al.  Breaking the sound barrier in holography , 2016, 1609.03480.

[61]  J. Schaffner-Bielich,et al.  CONSTRAINING NEUTRON STAR MATTER WITH QUANTUM CHROMODYNAMICS , 2014 .