Research on Improved Method of Storage and Query of Large-Scale Remote Sensing Images

Thetraditionalmethodisusedtodealwithmassiveremotesensingdatastoredinlowefficiency andpoorscalability.ThisarticlepresentsaparallelprocessingmethodbasedonMapReduceand HBase.ThefillingofremotesensingimagesbytheHilbertcurvemakestheMapReducemethod constructpyramidsinparalleltoreducenetworkcommunicationbetweennodes.Then,theauthors designamassiveremotesensingdatastoragemodelcomposedofmetadatastoragemodel,index structureandfiltercolumnfamily.Finally,thisarticleusesMapReduceframeworkstorealizepyramid construction,storageandqueryofremotesensingdata.Theexperimentalresultsshowthatthismethod caneffectivelyimprovethespeedofdatawritingandquerying,andhasgoodscalability. KeywoRDS Data Query, Distribute Storage, HBase, MapReduce, Pyramid, Remote Data

[1]  Tinghuai Ma,et al.  MHBase: A Distributed Real-Time Query Scheme for Meteorological Data Based on HBase , 2016, Future Internet.

[2]  Zhenhong Du,et al.  Cloud storage of massive remote sensing data based on distributed file system , 2013, 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013).

[3]  Jinyun Fang,et al.  A novel method to manage very large raster data on distributed key-value storage system , 2011, 2011 19th International Conference on Geoinformatics.

[4]  Chia-Hung Chang,et al.  High-performance computing in remote sensing image compression , 2011, Remote Sensing.

[5]  Kun Zheng,et al.  Research on Vector Spatial Data Storage Schema Based on Hadoop Platform , 2013 .

[6]  Divyakant Agrawal,et al.  MD-HBase: A Scalable Multi-dimensional Data Infrastructure for Location Aware Services , 2011, 2011 IEEE 12th International Conference on Mobile Data Management.

[7]  Hong Sun,et al.  Fast View of Mass Remote Sensing Images Based-on Image Pyramid , 2008, 2008 First International Conference on Intelligent Networks and Intelligent Systems.

[8]  Roberto Giachetta,et al.  A framework for processing large scale geospatial and remote sensing data in MapReduce environment , 2015, Comput. Graph..

[9]  Mayuri A. Mehta,et al.  A novel approach for efficient handling of small files in HDFS , 2015, 2015 IEEE International Advance Computing Conference (IACC).

[10]  Wei Xiong,et al.  A MPI-based parallel pyramid building algorithm for large-scale remote sensing images , 2015, 2015 23rd International Conference on Geoinformatics.

[11]  Jianguo Wang,et al.  In-Storage Computing for Hadoop MapReduce Framework: Challenges and Possibilities , 2016 .

[12]  Ralf Hartmut Güting,et al.  An introduction to spatial database systems , 1994, VLDB J..