CONFORMAL WASSERSTEIN DISTANCE : II
暂无分享,去创建一个
[1] Alexander M. Bronstein,et al. Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..
[2] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[3] J L Lancaster,et al. Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.
[4] Guillermo Sapiro,et al. A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..
[5] V. Deineko,et al. The Quadratic Assignment Problem: Theory and Algorithms , 1998 .
[6] Daniela Giorgi,et al. SHape REtrieval Contest 2007: Watertight Models Track , 2007 .
[7] I. Daubechies,et al. Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.
[8] Lei Zhu,et al. Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.
[9] Mikael Fortelius,et al. High-level similarity of dentitions in carnivorans and rodents , 2007, Nature.
[10] A. Dale,et al. High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.
[11] K. Polthier,et al. On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .
[12] Alexander M. Bronstein,et al. Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.
[13] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[14] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[15] Facundo Mémoli,et al. Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .
[16] S. Yau,et al. Global conformal surface parameterization , 2003 .
[17] T. Funkhouser,et al. Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.
[18] Ron Kimmel,et al. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[19] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[20] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .