Input-to-state stability for discrete-time nonlinear systems

The input-to-state stability property and iss small-gain theorems are introduced as the cornerstone of new stability criteria for discrete-time nonlinear systems.

[1]  J. Tsinias,et al.  The input-to-state stability condition and global stabilization of discrete-time systems , 1994, IEEE Trans. Autom. Control..

[2]  Lei Guo,et al.  On critical stability of discrete-time adaptive nonlinear control , 1997, IEEE Trans. Autom. Control..

[3]  Yuan Wang,et al.  A local nonlinear small-gain theorem for discrete-time feedback systems , 2000 .

[4]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[5]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[6]  Zhong-Ping Jiang,et al.  A converse Lyapunov theorem for discrete-time systems with disturbances , 2002, Syst. Control. Lett..

[7]  Yuan Wang,et al.  Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability , 1996, Math. Control. Signals Syst..

[8]  L. Praly,et al.  Stabilization by output feedback for systems with ISS inverse dynamics , 1993 .

[9]  J. P. Lasalle The stability and control of discrete processes , 1986 .

[10]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[11]  Zhong-Ping Jiang,et al.  A small-gain control method for nonlinear cascaded systems with dynamic uncertainties , 1997, IEEE Trans. Autom. Control..

[12]  Alberto Isidori,et al.  Trends in Control , 1995 .

[13]  M. Krstić,et al.  Inverse optimal design of input-to-state stabilizing nonlinear controllers , 1998, IEEE Trans. Autom. Control..

[14]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[15]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[16]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[17]  J. Tsinias Versions of Sontag's “Input to state stability condition” and the global stabilizability problem , 1993 .

[18]  M. A. Kaashoek,et al.  Robust control of linear systems and nonlinear control , 1990 .

[19]  Wei Lin,et al.  Losslessness, feedback equivalence, and the global stabilization of discrete-time nonlinear systems , 1994, IEEE Trans. Autom. Control..

[20]  Hassan K. Khalil,et al.  Adaptive control of a class of nonlinear discrete-time systems using neural networks , 1995, IEEE Trans. Autom. Control..

[21]  Eduardo Sontag Further facts about input to state stabilization , 1990 .

[22]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[23]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[24]  John Tsinias,et al.  Versions of Sontag's 'input to state stability condition' and the global stabilizability problem , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[25]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[26]  Andrew R. Teel,et al.  Feedback Stabilization of Nonlinear Systems: Sufficient Conditions and Lyapunov and Input-output Techniques , 1995 .

[27]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[28]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[29]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[30]  Donato Trigiante,et al.  THEORY OF DIFFERENCE EQUATIONS Numerical Methods and Applications (Second Edition) , 2002 .

[31]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[32]  S. Kotsios,et al.  The model matching problem for a certain class of nonlinear systems , 1993 .

[33]  Zhong-Ping Jiang,et al.  A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems , 1996, Autom..