Reduced Complexity Soft-Output MIMO Sphere Detectors—Part I: Algorithmic Optimizations

Optimum soft-output (SO) multiple-input multiple- output (MIMO) tree-search detection algorithms pose significant implementation challenges due to their nondeterministic processing throughput and high computational complexity. In this two-part work, we present extensive algorithmic and architectural optimizations of the sphere-decoding algorithm targeted at achieving practical tradeoffs between desired link performance and affordable computational complexity. The algorithmic optimizations in this part span the tree-search traversal scheme, leaf processing step, internal node-pruning and skipping step, child enumeration based on a state-machine, adaptive radius scaling for LLR clipping, QR-decomposition based on minimum cumulative residuals, and multitree configurations. The optimizations demonstrate that a 64-QAM SO MIMO detector for LTE is capable of attaining almost ML performance with an SNR loss of only 0.85 dB at 1% BLER by visiting at most 200 tree nodes.

[1]  Richard D. Wesel,et al.  Constellation labeling for linear encoders , 2001, IEEE Trans. Inf. Theory.

[2]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[3]  B. Hochwald,et al.  Silicon complexity for maximum likelihood MIMO detection using spherical decoding , 2004, IEEE Journal of Solid-State Circuits.

[4]  Giuseppe Caire,et al.  A unified framework for tree search decoding: rediscovering the sequential decoder , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[5]  John R. Barry,et al.  The Chase Family of Detection Algorithms for Multiple-Input Multiple-Output Channels , 2008, IEEE Transactions on Signal Processing.

[6]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[7]  Michael P. Fitz,et al.  A Novel Soft-Output Layered Orthogonal Lattice Detector for Multiple Antenna Communications , 2006, 2006 IEEE International Conference on Communications.

[8]  K. Kammeyer,et al.  Efficient algorithm for decoding layered space-time codes , 2001 .

[9]  E. Biglieri,et al.  A universal decoding algorithm for lattice codes , 1993 .

[10]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[11]  A. Burg,et al.  VLSI implementation of MIMO detection using the sphere decoding algorithm , 2005, IEEE Journal of Solid-State Circuits.

[12]  Ahmed M. Eltawil,et al.  Evaluation Framework for k-Best Sphere Decoders , 2010, J. Circuits Syst. Comput..

[13]  Ahmed M. Eltawil,et al.  A Best-First Soft/Hard Decision Tree Searching MIMO Decoder for a 4 $\times$ 4 64-QAM System , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[14]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[15]  K.-D. Kammeyer,et al.  MMSE extension of V-BLAST based on sorted QR decomposition , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[16]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[17]  Helmut Bölcskei,et al.  Soft–Input Soft–Output Single Tree-Search Sphere Decoding , 2009, IEEE Transactions on Information Theory.

[18]  Zhan Guo,et al.  A VLSI architecture of the Schnorr-Euchner decoder for MIMO systems , 2004, Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication (IEEE Cat. No.04EX710).

[19]  Georgios B. Giannakis,et al.  Approaching MIMO channel capacity with reduced-complexity soft sphere decoding , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[20]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[21]  Sivarama Venkatesan,et al.  MIMO Communication for Cellular Networks , 2011 .

[22]  Babak Hassibi,et al.  An efficient square-root algorithm for BLAST , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[23]  Helmut Bölcskei,et al.  Soft-output sphere decoding: algorithms and VLSI implementation , 2008, IEEE Journal on Selected Areas in Communications.

[24]  Wai Ho Mow,et al.  A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[25]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .

[26]  Chih-Hung Lin,et al.  Iterative $QR$ Decomposition Architecture Using the Modified Gram–Schmidt Algorithm for MIMO Systems , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  A. Robert Calderbank,et al.  MIMO Wireless Communications , 2007 .

[28]  Mohamed Oussama Damen,et al.  Lattice code decoder for space-time codes , 2000, IEEE Communications Letters.

[29]  B. Ottersten,et al.  Parallel Implementation of a Soft Output Sphere Decoder , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[30]  Georgios B. Giannakis,et al.  Space-time coding for broadband wireless communications , 2003, Wirel. Commun. Mob. Comput..

[31]  Michael E. Pohst,et al.  On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications , 1981, SIGS.

[32]  Reinaldo A. Valenzuela,et al.  Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture , 1999 .

[33]  Zhiyuan Yan,et al.  Memory-Constrained Tree Search Detection and New Ordering Schemes , 2009, IEEE Journal of Selected Topics in Signal Processing.

[34]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[35]  Björn E. Ottersten,et al.  On the complexity of sphere decoding in digital communications , 2005, IEEE Transactions on Signal Processing.

[36]  Ahmed M. Eltawil,et al.  Design and Implementation of a Sort-Free K-Best Sphere Decoder , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[37]  Ian J. Wassell,et al.  A new ordering for efficient sphere decoding , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[38]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[39]  Dirk Wübben,et al.  Lattice Reduction , 2011, IEEE Signal Processing Magazine.

[40]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[41]  Chih-Hung Lin,et al.  Iterative QR Decomposition Architecture Using the Modified Gram-Schmidt Algorithm for MIMO Systems , 2010, IEEE Trans. Circuits Syst. I Regul. Pap..