Functional characterization of CgPBS2, a MAP kinase kinase in Colletotrichum gloeosporioides, using osmotic stress sensitivity as a selection marker

[1]  Chunhua Lin,et al.  The Colletotrichum gloeosporioides perilipin homologue CAP 20 regulates functional appressorial formation and fungal virulence , 2018 .

[2]  Meenakshi Sharma,et al.  Colletotrichum gloeosporioides : An Anthracnose Causing Pathogen of Fruits and Vegetables , 2015 .

[3]  R. Illias,et al.  Cgl-SLT2 is required for appressorium formation, sporulation and pathogenicity in Colletotrichum gloeosporioides , 2013, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[4]  T. Shi,et al.  The use of T-DNA tagging to isolate mutants of Colletotrichum gloeosporioides and Colletotrichum acutatum with reduced virulence against Hevea brasiliensis. , 2013 .

[5]  Chunhua Lin,et al.  Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. , 2013, Microbiological research.

[6]  E. Pérez-Nadales,et al.  Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. , 2009, Fungal genetics and biology : FG & B.

[7]  T. Kuwano,et al.  Comparison between polyethylene glycol- and polyethylenimine-mediated transformation of Aspergillus nidulans , 2008, Current Genetics.

[8]  B. Horwitz,et al.  Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. , 2008, Molecular plant-microbe interactions : MPMI.

[9]  Stefan Hohmann,et al.  Yeast osmoregulation. , 2007, Methods in enzymology.

[10]  Xinhua Zhao,et al.  Mitogen-Activated Protein Kinase Pathways and Fungal Pathogenesis , 2007, Eukaryotic Cell.

[11]  Chie Mori,et al.  A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. , 2007, Microbiological research.

[12]  G. Kema,et al.  MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. , 2006, Molecular plant-microbe interactions : MPMI.

[13]  G. May,et al.  Novel Mitogen-Activated Protein Kinase MpkC of Aspergillus fumigatus Is Required for Utilization of Polyalcohol Sugars , 2006, Eukaryotic Cell.

[14]  J. Heitman,et al.  A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. , 2006, Molecular biology of the cell.

[15]  J. Latgé,et al.  The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. , 2006, Medical mycology.

[16]  A. Osbourn,et al.  The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi , 2004, Nature.

[17]  Xinhua Zhao,et al.  A Ligation-PCR Approach for Generating Gene Replacement Constructs in Magnaporthe grisea , 2004 .

[18]  T. Okuno,et al.  Fungicide activity through activation of a fungal signalling pathway , 2004, Molecular microbiology.

[19]  G. May,et al.  A Mitogen-Activated Protein Kinase That Senses Nitrogen Regulates Conidial Germination and Growth in Aspergillus fumigatus , 2004, Eukaryotic Cell.

[20]  Seung-moon Park,et al.  Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus‐mediated perturbation of its phosphorylation in response to hypertonic stress , 2004, Molecular microbiology.

[21]  T. Fernando,et al.  Colletotrichum acutatum is the main cause of Colletotrichum leaf disease of rubber in Sri Lanka , 2004, Mycopathologia.

[22]  Natalie L. Catlett,et al.  Split-Marker Recombination for Efficient Targeted Deletion of Fungal Genes , 2003 .

[23]  Kazuo Tatebayashi,et al.  A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway , 2003, The EMBO journal.

[24]  C. Nombela,et al.  The Hog1 Mitogen-Activated Protein Kinase Is Essential in the Oxidative Stress Response and Chlamydospore Formation in Candidaalbicans , 2003, Eukaryotic Cell.

[25]  D. Weeks,et al.  Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. , 2002, The Plant journal : for cell and molecular biology.

[26]  M. Karin,et al.  Mammalian MAP kinase signalling cascades , 2001, Nature.

[27]  N. Talbot,et al.  Independent Signaling Pathways Regulate Cellular Turgor during Hyperosmotic Stress and Appressorium-Mediated Plant Infection by Magnaporthe grisea , 1999, Plant Cell.

[28]  M. Gustin,et al.  MAP Kinase Pathways in the YeastSaccharomyces cerevisiae , 1998, Microbiology and Molecular Biology Reviews.

[29]  F. Posas,et al.  Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. , 1997, Science.

[30]  H. Blau,et al.  Membrane-bound neomycin phosphotransferase confers drug-resistance in mammalian cells: A marker for high-efficiency targeting of genes encoding secreted and cell-surface proteins , 1994, Somatic cell and molecular genetics.

[31]  G. Boguslawski PBS2, a yeast gene encoding a putative protein kinase, interacts with the RAS2 pathway and affects osmotic sensitivity of Saccharomyces cerevisiae. , 1992, Journal of general microbiology.

[32]  C. Thompson,et al.  Characterization of the herbicide‐resistance gene bar from Streptomyces hygroscopicus , 1987, The EMBO journal.

[33]  J. Davies,et al.  Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. , 1983, Gene.