Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading
暂无分享,去创建一个
[1] PHILIP L. LEDERER,et al. Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements , 2016, SIAM J. Numer. Anal..
[2] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[3] Serge Nicaise,et al. Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations , 2001, SIAM J. Numer. Anal..
[4] Sylvie Monniaux. NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS : THE FUJITA-KATO SCHEME , 2005, math/0511213.
[5] Nicolas R. Gauger,et al. On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond , 2018, The SMAI journal of computational mathematics.
[6] L. R. Scott,et al. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .
[7] Alexander Linke,et al. Pressure-robustness in quasi-optimal a priori estimates for the Stokes problem , 2019, ArXiv.
[8] S. Nicaise,et al. A non‐conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges , 2001 .
[9] Monique Dauge,et al. Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .
[10] Volker John,et al. On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..
[11] G. Barrenechea,et al. The inf-sup stability of the lowest order Taylor–Hood pair on affine anisotropic meshes , 2017, IMA Journal of Numerical Analysis.
[12] S. Nicaise,et al. The inf-sup condition for low order elements on anisotropic meshes , 2004 .
[13] Ricardo G. Durán,et al. Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra , 2008, Math. Comput..
[14] Rolf Stenberg,et al. Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes , 1999, Numerische Mathematik.
[15] Serge Nicaise,et al. Regularity and a priori error analysis on anisotropic meshes of a Dirichlet problem in polyhedral domains , 2018, Numerische Mathematik.
[16] J. Guzmán,et al. Conforming and divergence-free Stokes elements in three dimensions , 2014 .
[17] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[18] Philipp W. Schroeder. Robustness of High-Order Divergence-Free Finite Element Methods for Incompressible Computational Fluid Dynamics , 2019 .
[19] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[20] Alexander Linke,et al. On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .
[21] Alexander Linke,et al. Optimal L2 velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element , 2015 .
[22] Michael Neilan,et al. Conforming and divergence-free Stokes elements on general triangular meshes , 2013, Math. Comput..
[23] Alexander Linke,et al. Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-Problem , 2017, Math. Comput..
[24] Alexander Linke,et al. Optimal and Pressure-Independent L² Velocity Error Estimates for a Modified Crouzeix-Raviart Stokes Element with BDM Reconstructions , 2015 .
[25] Ricardo G. Durán,et al. The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..
[26] Rüdiger Verfürth,et al. A Quasi-optimal Crouzeix-Raviart Discretization of the Stokes Equations , 2018, SIAM J. Numer. Anal..
[27] Christoph Lehrenfeld,et al. Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.
[28] Mark Ainsworth,et al. The Stability of Mixed hp-Finite Element Methods for Stokes Flow on High Aspect Ratio Elements , 2000, SIAM J. Numer. Anal..
[29] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[30] Serge Nicaise,et al. The inf-sup condition for low order elements on anisotropic meshes , 2004 .
[31] Thomas Apel,et al. Brezzi-Douglas-Marini interpolation of any order on anisotropic triangles and tetrahedra , 2019, SIAM J. Numer. Anal..
[32] Mark Ainsworth,et al. A uniformly stable family of mixed hp‐finite elements with continuous pressures for incompressible flow , 2002 .
[33] Giovanni P. Galdi,et al. On the stokes problem in Lipschitz domains , 1994 .
[34] Serge Nicaise,et al. SOME MIXED FINITE ELEMENT METHODS ON ANISOTROPIC MESHES , 2001 .
[35] Thomas Apel,et al. Anisotropic interpolation with applications to the finite element method , 1991, Computing.
[36] R. Rannacher,et al. Finite Element Solution of the Incompressible Navier-Stokes Equations on Anisotropically Refined Meshes , 1995 .