Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading

The velocity solution of the incompressible Stokes equations is not affected by changes of the right hand side data in form of gradient fields. Most mixed methods do not replicate this property in the discrete formulation due to a relaxation of the divergence constraint which means that they are not pressure-robust. A recent reconstruction approach for classical methods recovers this invariance property for the discrete solution, by mapping discretely divergence-free test functions to exactly divergence-free functions in the sense of $${\varvec{H}}({\text {div}})$$ H ( div ) . Moreover, the Stokes solution has locally singular behavior in three-dimensional domains near concave edges, which degrades the convergence rates on quasi-uniform meshes and makes anisotropic mesh grading reasonable in order to regain optimal convergence characteristics. Finite element error estimates of optimal order on meshes of tensor-product type with appropriate anisotropic grading are shown for the pressure-robust modified Crouzeix–Raviart method using the reconstruction approach. Numerical examples support the theoretical results.

[1]  PHILIP L. LEDERER,et al.  Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements , 2016, SIAM J. Numer. Anal..

[2]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[3]  Serge Nicaise,et al.  Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations , 2001, SIAM J. Numer. Anal..

[4]  Sylvie Monniaux NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS : THE FUJITA-KATO SCHEME , 2005, math/0511213.

[5]  Nicolas R. Gauger,et al.  On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond , 2018, The SMAI journal of computational mathematics.

[6]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[7]  Alexander Linke,et al.  Pressure-robustness in quasi-optimal a priori estimates for the Stokes problem , 2019, ArXiv.

[8]  S. Nicaise,et al.  A non‐conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges , 2001 .

[9]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[10]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[11]  G. Barrenechea,et al.  The inf-sup stability of the lowest order Taylor–Hood pair on affine anisotropic meshes , 2017, IMA Journal of Numerical Analysis.

[12]  S. Nicaise,et al.  The inf-sup condition for low order elements on anisotropic meshes , 2004 .

[13]  Ricardo G. Durán,et al.  Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra , 2008, Math. Comput..

[14]  Rolf Stenberg,et al.  Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes , 1999, Numerische Mathematik.

[15]  Serge Nicaise,et al.  Regularity and a priori error analysis on anisotropic meshes of a Dirichlet problem in polyhedral domains , 2018, Numerische Mathematik.

[16]  J. Guzmán,et al.  Conforming and divergence-free Stokes elements in three dimensions , 2014 .

[17]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[18]  Philipp W. Schroeder Robustness of High-Order Divergence-Free Finite Element Methods for Incompressible Computational Fluid Dynamics , 2019 .

[19]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[20]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[21]  Alexander Linke,et al.  Optimal L2 velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element , 2015 .

[22]  Michael Neilan,et al.  Conforming and divergence-free Stokes elements on general triangular meshes , 2013, Math. Comput..

[23]  Alexander Linke,et al.  Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-Problem , 2017, Math. Comput..

[24]  Alexander Linke,et al.  Optimal and Pressure-Independent L² Velocity Error Estimates for a Modified Crouzeix-Raviart Stokes Element with BDM Reconstructions , 2015 .

[25]  Ricardo G. Durán,et al.  The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..

[26]  Rüdiger Verfürth,et al.  A Quasi-optimal Crouzeix-Raviart Discretization of the Stokes Equations , 2018, SIAM J. Numer. Anal..

[27]  Christoph Lehrenfeld,et al.  Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.

[28]  Mark Ainsworth,et al.  The Stability of Mixed hp-Finite Element Methods for Stokes Flow on High Aspect Ratio Elements , 2000, SIAM J. Numer. Anal..

[29]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[30]  Serge Nicaise,et al.  The inf-sup condition for low order elements on anisotropic meshes , 2004 .

[31]  Thomas Apel,et al.  Brezzi-Douglas-Marini interpolation of any order on anisotropic triangles and tetrahedra , 2019, SIAM J. Numer. Anal..

[32]  Mark Ainsworth,et al.  A uniformly stable family of mixed hp‐finite elements with continuous pressures for incompressible flow , 2002 .

[33]  Giovanni P. Galdi,et al.  On the stokes problem in Lipschitz domains , 1994 .

[34]  Serge Nicaise,et al.  SOME MIXED FINITE ELEMENT METHODS ON ANISOTROPIC MESHES , 2001 .

[35]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[36]  R. Rannacher,et al.  Finite Element Solution of the Incompressible Navier-Stokes Equations on Anisotropically Refined Meshes , 1995 .