Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction

Even though the eyes constantly change position, the location of a stimulus can be accurately represented by a population of neurons with retinotopic receptive fields modulated by eye position gain fields. Recent electrophysiological studies, however, indicate that eye position gain fields may serve an additional function since they have a non-uniform spatial distribution that increases the neural response to stimuli in the straight-ahead direction. We used functional magnetic resonance imaging and a wide-field stimulus display to determine whether gaze modulations in early human visual cortex enhance the blood-oxygenation-level dependent (BOLD) response to stimuli that are straight-ahead. Subjects viewed rotating polar angle wedge stimuli centered straight-ahead or vertically displaced by ±20° eccentricity. Gaze position did not affect the topography of polar phase-angle maps, confirming that coding was retinotopic, but did affect the amplitude of the BOLD response, consistent with a gain field. In agreement with recent electrophysiological studies, BOLD responses in V1 and V2 to a wedge stimulus at a fixed retinal locus decreased when the wedge location in head-centered coordinates was farther from the straight-ahead direction. We conclude that stimulus-evoked BOLD signals are modulated by a systematic, non-uniform distribution of eye-position gain fields.

[1]  A. Dobbins,et al.  Distance modulation of neural activity in the visual cortex. , 1998, Science.

[2]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[3]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[4]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[5]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[6]  L. Maffei,et al.  Extraocular proprioceptive projections to the visual cortex , 1977, Experimental Brain Research.

[7]  Martin I. Sereno,et al.  Spatial maps in frontal and prefrontal cortex , 2006, NeuroImage.

[8]  Laurent Petit,et al.  Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations , 2004, BMC Neuroscience.

[9]  R. Larsen An introduction to mathematical statistics and its applications / Richard J. Larsen, Morris L. Marx , 1986 .

[10]  Andrew T. Smith,et al.  Representation of eye position in the human parietal cortex. , 2010, Journal of neurophysiology.

[11]  Gunnar Blohm,et al.  Intrinsic Reference Frames of Superior Colliculus Visuomotor Receptive Fields during Head-Unrestrained Gaze Shifts , 2011, The Journal of Neuroscience.

[12]  M. Corbetta,et al.  Separating Processes within a Trial in Event-Related Functional MRI II. Analysis , 2001, NeuroImage.

[13]  Steve W. C. Chang,et al.  Using a Compound Gain Field to Compute a Reach Plan , 2009, Neuron.

[14]  G. DeAngelis,et al.  Coding of Stereoscopic Depth Information in Visual Areas V3 and V3A , 2011, The Journal of Neuroscience.

[15]  E. DeYoe,et al.  Functional magnetic resonance imaging (FMRI) of the human brain , 1994, Journal of Neuroscience Methods.

[16]  Jonathan D. Cohen,et al.  Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold , 1995, Magnetic resonance in medicine.

[17]  Justin L. Gardner,et al.  Modulation of Visual Responses by Gaze Direction in Human Visual Cortex , 2013, The Journal of Neuroscience.

[18]  Simona Celebrini,et al.  Privileged Processing of the Straight-Ahead Direction in Primate Area V1 , 2010, Neuron.

[19]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[20]  S. Celebrini,et al.  Privileged visual processing of the straight-ahead direction in humans. , 2012, Journal of vision.

[21]  Frank Bremmer,et al.  Eye position effects in macaque area V4 , 2000, Neuroreport.

[22]  C. Galletti,et al.  Wide-Field Retinotopy Defines Human Cortical Visual Area V6 , 2006, The Journal of Neuroscience.

[23]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Sereno,et al.  Attention and memory-related responses of neurons in the lateral intraparietal area during spatial and shape-delayed match-to-sample tasks. , 2006, Journal of neurophysiology.

[25]  R. Andersen,et al.  The role of the teacher in learning-based models of parietal area 7a , 1988, Brain Research Bulletin.

[26]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[27]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[28]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[29]  C. Galletti,et al.  Human V6: The Medial Motion Area , 2009, Cerebral cortex.

[30]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  M. Sereno,et al.  Point-Light Biological Motion Perception Activates Human Premotor Cortex , 2004, The Journal of Neuroscience.

[32]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Kersten,et al.  The representation of perceived angular size in human primary visual cortex , 2006, Nature Neuroscience.

[34]  Jack L. Lancaster,et al.  A modality‐independent approach to spatial normalization of tomographic images of the human brain , 1995 .

[35]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[36]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Masahiro Takei,et al.  Human resource development and visualization , 2009, J. Vis..

[38]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[39]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[40]  Mingsha Zhang,et al.  The proprioceptive representation of eye position in monkey primary somatosensory cortex , 2007, Nature Neuroscience.

[41]  R. M. Siegel,et al.  Cerebral Cortex doi:10.1093/cercor/bhj155 Spatiotemporal Dynamics of the Functional Architecture for Gain Fields in Inferior Parietal Lobule of Behaving Monkey , 2022 .

[42]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[43]  Marc Joliot,et al.  Eye position‐dependent activity in the primary visual area as revealed by fMRI , 2007, Human brain mapping.

[44]  D. Kersten,et al.  Border Ownership Selectivity in Human Early Visual Cortex and its Modulation by Attention , 2009, The Journal of Neuroscience.

[45]  John M. Allman,et al.  The Effect of Gaze Angle and Fixation Distance on the Responses of Neurons in V1, V2, and V4 , 2002, Neuron.

[46]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[47]  R. Buckner,et al.  Cluster size thresholds for assessment of significant activation in fMRI , 2001, NeuroImage.

[48]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[49]  M. D’Esposito,et al.  Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. , 1997, NeuroImage.

[50]  Martin Wiesmann,et al.  Asymmetric modulation of human visual cortex activity during 10° lateral gaze (fMRI study) , 2005, NeuroImage.

[51]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[52]  K. Guo,et al.  [Influence of visual stimuli on eye-position related activities of neurons in primary visual cortex (V1) of awake monkeys]. , 1997, Sheng li xue bao : [Acta physiologica Sinica].

[53]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[55]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[56]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[57]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[58]  Martin I. Sereno,et al.  The Human Homologue of Macaque Area V6A , 2012 .

[59]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[60]  S Thorpe,et al.  Modulation of neural stereoscopic processing in primate area V1 by the viewing distance. , 1992, Science.

[61]  Mao-Jiun J. Wang,et al.  Approach strategy and working posture in manual hand tool operation. , 2010, Human movement science.

[62]  M. Wiesmann,et al.  Asymmetric modulation of human visual cortex activity during 10 degrees lateral gaze (fMRI study). , 2005, NeuroImage.

[63]  J. Crawford,et al.  Fields of Gain in the Brain , 2009, Neuron.

[64]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[65]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[66]  M. Corbetta,et al.  Separating Processes within a Trial in Event-Related Functional MRI I. The Method , 2001, NeuroImage.

[67]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[68]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[69]  T. Sejnowski,et al.  Book Review: Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[70]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.