FuSSFFra, a fuzzy semi-supervised forecasting framework: the case of the air pollution in Athens

Mining hidden knowledge from available datasets is an extremely time-consuming and demanding process, especially in our era with the vast volume of high-complexity data. Additionally, validation of results requires the adoption of appropriate multifactor criteria, exhaustive testing and advanced error measurement techniques. This paper proposes a novel Hybrid Fuzzy Semi-Supervised Forecasting Framework. It combines fuzzy logic, semi-supervised clustering and semi-supervised classification in order to model Big Data sets in a faster, simpler and more essential manner. Its advantages are clearly shown and discussed in the paper. It uses as few pre-classified data as possible while providing a simple method of safe process validation. This innovative approach is applied herein to effectively model the air quality of Athens city. More specifically, it manages to forecast extreme air pollutants’ values and to explore the parameters that affect their concentration. Also it builds a correlation between pollution and general climatic conditions. Overall, it correlates the built model with the malfunctions caused to the city life by this serious environmental problem.

[1]  Konstantinos Demertzis,et al.  Blockchain-based Consents Management for Personal Data Processing in the IoT Ecosystem , 2018, ICETE.

[2]  Konstantinos Demertzis,et al.  The Impact of Climate Change on Biodiversity: The Ecological Consequences of Invasive Species in Greece , 2018 .

[3]  Konstantinos Demertzis,et al.  Bio-inspired Hybrid Intelligent Method for Detecting Android Malware , 2016, KICSS.

[4]  Lazaros S. Iliadis,et al.  Comparison of Self Organizing Maps Clustering with Supervised Classification for Air Pollution Data Sets , 2014, AIAI.

[5]  Abel G. Silva-Filho,et al.  A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images , 2016, Expert Syst. Appl..

[6]  Trung Le,et al.  Fuzzy Semi-supervised Large Margin One-Class Support Vector Machine , 2015 .

[7]  Jean-Michel Renders,et al.  Semi-supervised Document Classification with a Mislabeling Error Model , 2008, ECIR.

[8]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[9]  Katsuhiro Honda,et al.  A Semi-Supervised Framework for MMMs-Induced Fuzzy Co-Clustering with Virtual Samples , 2016, Adv. Fuzzy Syst..

[10]  Hichem Frigui,et al.  Semi-Supervised Fuzzy Clustering with Learnable Cluster dependent Kernels , 2013, Int. J. Artif. Intell. Tools.

[11]  Konstantinos Demertzis,et al.  A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security , 2015 .

[12]  Konstantinos Demertzis,et al.  An innovative soft computing system for smart energy grids cybersecurity , 2018 .

[13]  Konstantinos Demertzis,et al.  Hybrid intelligent modeling of wild fires risk , 2018, Evol. Syst..

[14]  Konstantinos Demertzis,et al.  Intelligent Bio-Inspired Detection of Food Borne Pathogen by DNA Barcodes: The Case of Invasive Fish Species Lagocephalus Sceleratus , 2015, EANN.

[15]  Konstantinos Demertzis,et al.  A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Spiking Neural Network Classification , 2013, e-Democracy.

[16]  Konstantinos Demertzis,et al.  Adaptive Elitist Differential Evolution Extreme Learning Machines on Big Data: Intelligent Recognition of Invasive Species , 2016, INNS Conference on Big Data.

[17]  Konstantinos Demertzis,et al.  Extreme deep learning in biosecurity: the case of machine hearing for marine species identification , 2018, J. Inf. Telecommun..

[18]  Konstantinos Demertzis,et al.  HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens , 2015, Neural Computing and Applications.

[19]  Houda Benbrahim,et al.  Fuzzy Semi-supervised Support Vector Machines , 2011, MLDM.

[20]  Konstantinos Demertzis,et al.  Hybrid Soft Computing Analytics of Cardiorespiratory Morbidity and Mortality Risk Due to Air Pollution , 2017, ISCRAM-med.

[21]  Konstantinos Demertzis,et al.  Machine learning use in predicting interior spruce wood density utilizing progeny test information , 2017, Neural Computing and Applications.

[22]  Carlos Carrascosa,et al.  Towards the Development of Agent-Based Organizations through MDD , 2013, Int. J. Artif. Intell. Tools.

[23]  Yang Junkai,et al.  Application of semi-supervised fuzzy kernel clustering algorithm in recognizing transformer winding's pressed state , 2016, 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC).

[24]  F. Pukelsheim The Three Sigma Rule , 1994 .

[25]  Konstantinos Demertzis,et al.  Hybrid Unsupervised Modeling of Air Pollution Impact to Cardiovascular and Respiratory Diseases , 2017, Int. J. Inf. Syst. Crisis Response Manag..

[26]  Francisco Herrera,et al.  Genetic Fuzzy Systems - Evolutionary Tuning and Learning of Fuzzy Knowledge Bases , 2002, Advances in Fuzzy Systems - Applications and Theory.

[27]  Konstantinos Demertzis,et al.  Fuzzy Cognitive Maps for Long-Term Prognosis of the Evolution of Atmospheric Pollution, Based on Climate Change Scenarios: The Case of Athens , 2016, ICCCI.

[28]  Neamat El Gayar,et al.  A semi-supervised learning approach for soft labeled data , 2010, 2010 10th International Conference on Intelligent Systems Design and Applications.

[29]  M. Amparo Vila,et al.  On the Use of Fuzzy Constraints in Semisupervised Clustering , 2016, IEEE Transactions on Fuzzy Systems.

[30]  Konstantinos Demertzis,et al.  Commentary: Aedes albopictus and Aedes japonicas—two invasive mosquito species with different temperature niches in Europe , 2017, Front. Environ. Sci..

[31]  Chris Cornelis,et al.  Semi-Supervised Fuzzy-Rough Feature Selection , 2015, RSFDGrC.

[32]  Yang Yan,et al.  Label-based semi-supervised fuzzy co-clustering for document categoraization , 2011, 2011 8th International Conference on Information, Communications & Signal Processing.

[33]  Earl Cox,et al.  Fuzzy Modeling And Genetic Algorithms For Data Mining And Exploration , 2005 .

[34]  Konstantinos Demertzis,et al.  A Spiking One-Class Anomaly Detection Framework for Cyber-Security on Industrial Control Systems , 2017, EANN.

[35]  Konstantinos Demertzis,et al.  A Machine Hearing Framework for Real-Time Streaming Analytics Using Lambda Architecture , 2019, EANN.

[36]  Konstantinos Demertzis,et al.  Hybrid Soft Computing for Atmospheric Pollution-Climate Change Data Mining , 2018, Trans. Comput. Collect. Intell..

[37]  L. Iliadis,et al.  Ladon: A Cyber-Threat Bio-Inspired Intelligence Management System , 2016 .

[38]  P. Ghosh,et al.  Proto-Fuzzy Concepts Generation Technique Using Fuzzy Graph , 2015 .

[39]  Konstantinos Demertzis,et al.  Artificial Intelligence Applications and Innovations: 18th IFIP WG 12.5 International Conference, AIAI 2022, Hersonissos, Crete, Greece, June 17–20, 2022, Proceedings, Part II , 2022, IFIP Advances in Information and Communication Technology.

[40]  Konstantinos Demertzis,et al.  SAME: An Intelligent Anti-malware Extension for Android ART Virtual Machine , 2015, ICCCI.

[41]  Katsuhiro Honda,et al.  A semi-supervised fuzzy co-clustering framework and application to twitter data analysis , 2015, 2015 International Conference on Informatics, Electronics & Vision (ICIEV).

[42]  Konstantinos Demertzis,et al.  Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning , 2016, Integr. Comput. Aided Eng..

[43]  Trung Le,et al.  Fuzzy entropy semi-supervised support vector data description , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[44]  Konstantinos Demertzis,et al.  Evolving Smart URL Filter in a Zone-Based Policy Firewall for Detecting Algorithmically Generated Malicious Domains , 2015, SLDS.

[45]  Zhisong Pan,et al.  Semi-supervised Fuzzy Relational Classifier , 2013, 2013 Sixth International Symposium on Computational Intelligence and Design.

[46]  Konstantinos Demertzis,et al.  A Computational Intelligence System Identifying Cyber-Attacks on Smart Energy Grids , 2018 .

[47]  L. Iliadis,et al.  Cognitive Web Application Firewall to Critical Infrastructures Protection from Phishing Attacks , 2019 .

[48]  Konstantinos Demertzis,et al.  Detecting invasive species with a bio-inspired semi-supervised neurocomputing approach: the case of Lagocephalus sceleratus , 2017, Neural Computing and Applications.

[49]  Konstantinos Demertzis,et al.  A deep spiking machine-hearing system for the case of invasive fish species , 2017, 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA).

[50]  Yu-Lin He,et al.  Fuzziness based semi-supervised learning approach for intrusion detection system , 2017, Inf. Sci..

[51]  Lazaros S. Iliadis,et al.  Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area: The Case of Athens , 2014, EANN.

[52]  Konstantinos Demertzis,et al.  Temporal Modeling of Invasive Species' Migration in Greece from Neighboring Countries Using Fuzzy Cognitive Maps , 2018, AIAI.

[53]  Konstantinos Demertzis,et al.  Computational intelligence anti-malware framework for android OS , 2017, Vietnam Journal of Computer Science.

[54]  Majid Nili Ahmadabadi,et al.  Competitive interaction reasoning: A bio-inspired reasoning method for fuzzy rule based classification systems , 2016, Inf. Sci..

[55]  Konstantinos Demertzis,et al.  Classifying with fuzzy chi-square test: The case of invasive species , 2018 .

[56]  Alistair A. Young,et al.  Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2017, MICCAI 2017.

[57]  Konstantinos Demertzis,et al.  Semi-supervised Hybrid Modeling of Atmospheric Pollution in Urban Centers , 2016, EANN.

[58]  Konstantinos Demertzis,et al.  The Next Generation Cognitive Security Operations Center: Adaptive Analytic Lambda Architecture for Efficient Defense against Adversarial Attacks , 2019, Big Data Cogn. Comput..

[59]  Konstantinos Demertzis,et al.  Evolving Computational Intelligence System for Malware Detection , 2014, CAiSE Workshops.

[60]  Konstantinos Demertzis,et al.  Comparative analysis of exhaust emissions caused by chainsaws with soft computing and statistical approaches , 2018, International Journal of Environmental Science and Technology.

[61]  Konstantinos Demertzis,et al.  The Next Generation Cognitive Security Operations Center: Network Flow Forensics Using Cybersecurity Intelligence , 2018, Big Data Cogn. Comput..

[62]  Limin Luo,et al.  A Semi-supervised Fuzzy SVM Clustering Framework , 2012 .