Adaptive diversity maintenance and convergence guarantee in multiobjective evolutionary algorithms

The issue of obtaining a well-converged and well-distributed set of Pareto optimal solutions efficiently and automatically is crucial in multiobjective evolutionary algorithms (MOEAs). Many studies have proposed different evolutionary algorithms that can progress towards Pareto optimal sets with a wide-spread distribution of solutions. However, most mathematically convergent MOEAs desire certain prior knowledge about the objective space in order to efficiently maintain widespread solutions. We propose, based on our novel E-dominance concept, an adaptive rectangle archiving (ARA) strategy that overcomes this important problem. The MOEA with this archiving technique provably converges to well-distributed Pareto optimal solutions without prior knowledge. ARA complements the existing archiving techniques, and is useful to both researchers and practitioners.

[1]  Kalyanmoy Deb,et al.  Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions , 2003, EMO.

[2]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[3]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[4]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[5]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[6]  H. Reuter An approximation method for the efficiency set of multiobjective programming problems , 1990 .

[7]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[8]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[9]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[10]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[11]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[12]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[15]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[16]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[17]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[18]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[19]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[20]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[21]  E. F. Khor,et al.  An Evolutionary Algorithm with Advanced Goal and Priority Specification for Multi-objective Optimization , 2011, J. Artif. Intell. Res..

[22]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[23]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .