Sustained Neurotransmitter Release: New Molecular Clues

Chemical synapses convey impulses at high frequency by exocytosis of synaptic vesicles. To avoid failure of synaptic transmission, rapid replenishment of synaptic vesicles must occur. Recent molecular perturbation studies have confirmed that the recycling of synaptic vesicles involves clathrin‐mediated endocytosis. The rate of exocytosis would thus be limited by the capacity of the synaptic clathrin machinery unless vesicles could be drawn from existing pools. The mobilization of vesicles from the pool clustered at the release sites appears to provide a mechanism by which the rate of exocytosis can intermittently exceed the rate of recycling. Perturbation of synapsins causes disruption of vesicle clusters and impairment of synaptic transmission at high but not at low frequencies. Both clathrin‐mediated recycling and mobilization of vesicles from the reserve pool are thus important in the replenishment of synaptic vesicles. The efficacy of each mechanism appears to differ between synapses which operate with different patterns of activity.

[1]  Robert H. Holdsworth THE ISOLATION AND PARTIAL CHARACTERIZATION OF THE PYRENOID PROTEIN OF EREMOSPHAERA VIRIDIS , 1971, The Journal of cell biology.

[2]  M. Robinson,et al.  The role of clathrin, adaptors and dynamin in endocytosis. , 1994, Current opinion in cell biology.

[3]  G. Augustine,et al.  Synaptic structure and function: Dynamic organization yields architectural precision , 1995, Cell.

[4]  J. Meldolesi,et al.  Neurotransmitter release: fusion or 'kiss-and-run'? , 1994, Trends in cell biology.

[5]  W. Almers Synapses. How fast can you get? , 1994, Nature.

[6]  S. Grillner,et al.  14 Central glutamatergic transmission , 1994 .

[7]  Richard H Schaller Membrane trafficking in the presynaptic nerve terminal , 1995, Neuron.

[8]  P. Greengard,et al.  Synapsins in the vertebrate retina: Absence from ribbon synapses and heterogeneous distribution among conventional synapses , 1990, Neuron.

[9]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[10]  A. Henkel,et al.  Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. Heuser,et al.  The role of coated vesicles in recycling of synaptic vesicle membrane. , 1989, Cell biology international reports.

[12]  F. Valtorta,et al.  Neurotransmitter release and synaptic vesicle recycling , 1990, Neuroscience.

[13]  W. Almers How fast can you get? , 1994, Nature.

[14]  K. Ikeda,et al.  Synaptic vesicles have two distinct recycling pathways , 1996, The Journal of cell biology.

[15]  H. Atwood,et al.  Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. , 1986, International review of neurobiology.

[16]  L. Brodin,et al.  Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. , 1997, Science.

[17]  W. Betz,et al.  Nerve Activity but Not Intracellular Calcium Determines the Time Course of Endocytosis at the Frog Neuromuscular Junction , 1996, Neuron.

[18]  K. Ikeda,et al.  Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  N. Hirokawa,et al.  Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system , 1995, The Journal of cell biology.

[20]  W. Regehr,et al.  Timing of neurotransmission at fast synapses in the mammalian brain , 1996, Nature.

[21]  G. Matthews,et al.  Depletion and Replenishment of Vesicle Pools at a Ribbon-Type Synaptic Terminal , 1997, The Journal of Neuroscience.

[22]  D. Puro The Retina. An Approachable Part of the Brain , 1988 .

[23]  G. Matthews Synaptic exocytosis and endocytosis: capacitance measurements , 1996, Current Opinion in Neurobiology.

[24]  P. Camilli,et al.  Synaptic vesicle endocytosis , 1997, Current Opinion in Neurobiology.

[25]  S. Grillner,et al.  Neural networks that co-ordinate locomotion and body orientation in lamprey , 1995, Trends in Neurosciences.

[26]  H. Jäckle,et al.  Role of Drosophila α-Adaptin in Presynaptic Vesicle Recycling , 1997, Cell.

[27]  P. De Camilli,et al.  A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[29]  M. McNiven,et al.  Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[30]  F Benfenati,et al.  Synaptic vesicle phosphoproteins and regulation of synaptic function. , 1993, Science.

[31]  L. Brodin,et al.  The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability. , 1994, Journal of neurophysiology.

[32]  R. Zucker,et al.  Exocytosis: A Molecular and Physiological Perspective , 1996, Neuron.

[33]  L. Brodin,et al.  Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  L. Brodin,et al.  Presynaptic glutamate levels in tonic and phasic motor axons correlate with properties of synaptic release , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Paul Greengard,et al.  Distinct pools of synaptic vesicles in neurotransmitter release , 1995, Nature.

[36]  T. A. Ryan Endocytosis at Nerve Terminals: Timing Is Everything , 1996, Neuron.

[37]  N. Hirokawa,et al.  The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1 , 1989, The Journal of cell biology.

[38]  W. Betz,et al.  Imaging exocytosis and endocytosis , 1996, Current Opinion in Neurobiology.

[39]  P. De Camilli,et al.  Piccolo, a novel 420 kDa protein associated with the presynaptic cytomatrix. , 1996, European journal of cell biology.

[40]  J. Rothman,et al.  Throttles and Dampers: Controlling the Engine of Membrane Fusion , 1997, Science.

[41]  T. Südhof,et al.  Essential functions of synapsins I and II in synaptic vesicle regulation , 1995, Nature.

[42]  C. Govind,et al.  Structural features of crayfish phasic and tonic neuromuscular terminals , 1996, The Journal of comparative neurology.

[43]  S. Grillner,et al.  Central glutamatergic transmission. A view from the presynaptic axon. , 1994, Advances in second messenger and phosphoprotein research.

[44]  T. Reese,et al.  The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse , 1988, Neuron.

[45]  W. Betz,et al.  Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. , 1992, Science.

[46]  S. J. Smith,et al.  The timing of synaptic vesicle endocytosis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Camilli,et al.  Molecular Mechanisms in Synaptic Vesicle Endocytosis and Recycling , 1996, Neuron.

[48]  L. Brodin,et al.  Glial and neuronal glutamine pools at glutamatergic synapses with distinct properties , 1997, Neuroscience.

[49]  T. Südhof Function of Rab3 GDP–GTP Exchange , 1997, Neuron.

[50]  I. Prior,et al.  Glutamate uptake occurs at an early stage of synaptic vesicle recycling , 1997, Current Biology.

[51]  R. Llinás,et al.  Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Harris,et al.  Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses , 1995, Neuropharmacology.

[53]  A. Mauro,et al.  TURNOVER OF TRANSMITTER AND SYNAPTIC VESICLES AT THE FROG NEUROMUSCULAR JUNCTION , 1973, The Journal of cell biology.

[54]  P. Maycox,et al.  Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling , 1992, The Journal of cell biology.

[55]  S. Schaeffer,et al.  Membrane recycling in the cone cell endings of the turtle retina , 1978, The Journal of cell biology.

[56]  R. Scheller Membrane trafficking in the presynaptic nerve terminal. , 1995, Neuron.

[57]  P. Camilli Keeping synapses up to speed , 1995, Nature.

[58]  H. Horvitz,et al.  Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans , 1995, Nature.

[59]  P. Greengard,et al.  Synaptic vesicle recycling in synapsin I knock-out mice , 1996, The Journal of cell biology.

[60]  Richard G. W. Anderson,et al.  Synaptotagmin I is a high affinity receptor for clathrin AP-2: Implications for membrane recycling , 1994, Cell.

[61]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[62]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[63]  P. De Camilli,et al.  The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin , 1996, The Journal of cell biology.

[64]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[65]  S. Schmid,et al.  Coated vesicles: a diversity of form and function , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[66]  G. Augustine,et al.  Exocytosis: proteins and perturbations. , 1996, Annual review of pharmacology and toxicology.