Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation

In this chapter, we present an automatic object detection and segmentation framework based on Marginal Space Learning (MSL), which integrates the components described in previous chapters into a complete segmentation system. In addition, simple and efficient methods based on mesh resampling are developed to establish mesh point correspondence, required to train a mean shape for shape initialization and build a statistical shape model for object boundary delineation. We use the four-chamber heart segmentation in cardiac Computed Tomography (CT) data as an example to illustrate the segmentation framework. Most of the technologies developed for heart chamber segmentation are generic, therefore can be applied directly or adapted easily to segment other anatomies in different imaging modalities.

[1]  Zhuowen Tu,et al.  Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[2]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[3]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[4]  Juha Koikkalainen,et al.  Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images , 2004, Medical Image Anal..

[5]  Dorin Comaniciu,et al.  Hierarchical parsing and semantic navigation of full body CT data , 2009, Medical Imaging.

[6]  John K. Tsotsos,et al.  Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI , 2008, Medical Image Anal..

[7]  Alexander G. Schwing,et al.  Reliable extraction of the mid-sagittal plane in 3D brain MRI via hierarchical landmark detection , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[8]  Dorin Comaniciu,et al.  Multi-part Left Atrium Modeling and Segmentation in C-Arm CT Volumes for Atrial Fibrillation Ablation , 2011, MICCAI.

[9]  Dorin Comaniciu,et al.  Database-Guided Simultaneous Multi-slice 3D Segmentation for Volumetric Data , 2006, ECCV.

[10]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Dorin Comaniciu,et al.  Constrained marginal space learning for efficient 3D anatomical structure detection in medical images , 2009, CVPR.

[12]  Cristian Lorenz,et al.  Multi-surface Cardiac Modelling, Segmentation, and Tracking , 2005, FIMH.

[13]  Milan Sonka,et al.  3-D active appearance models: segmentation of cardiac MR and ultrasound images , 2002, IEEE Transactions on Medical Imaging.

[14]  Xiaodong Wu,et al.  Optimal Surface Segmentation in Volumetric Images-A Graph-Theoretic Approach , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Dorin Comaniciu,et al.  Spine detection in CT and MR using iterated marginal space learning , 2013, Medical Image Anal..

[16]  Olivier Ecabert,et al.  Modeling shape variability for full heart segmentation in cardiac computed-tomography images , 2006, SPIE Medical Imaging.

[17]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[18]  Dorin Comaniciu,et al.  AutoMPR: Automatic detection of standard planes in 3D echocardiography , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[19]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[20]  Dorin Comaniciu,et al.  A fast and accurate tracking algorithm of left ventricles in 3D echocardiography , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[21]  Rüdiger Dillmann,et al.  Automatic 4D segmentation of the left ventricle in cardiac-CT-data , 2007, SPIE Medical Imaging.

[22]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[23]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[24]  Dorin Comaniciu,et al.  Robust object detection using marginal space learning and ranking-based multi-detector aggregation: Application to left ventricle detection in 2D MRI images , 2009, CVPR.

[25]  Dorin Comaniciu,et al.  Detection of 3D Spinal Geometry Using Iterated Marginal Space Learning , 2010, MCV.

[26]  H. Levine Medical Imaging , 2010, Annals of Biomedical Engineering.

[27]  Dorin Comaniciu,et al.  Multi-Part Modeling and Segmentation of Left Atrium in C-Arm CT for Image-Guided Ablation of Atrial Fibrillation , 2014, IEEE Transactions on Medical Imaging.

[28]  G. Wahba Spline models for observational data , 1990 .

[29]  Yang Wang,et al.  Prediction Based Collaborative Trackers (PCT): A Robust and Accurate Approach Toward 3D Medical Object Tracking , 2011, IEEE Transactions on Medical Imaging.

[30]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Gustavo Carneiro,et al.  Fast and Robust 3-D MRI Brain Structure Segmentation , 2009, MICCAI.

[32]  Gabriel Taubin,et al.  Curve and surface smoothing without shrinkage , 1995, Proceedings of IEEE International Conference on Computer Vision.

[33]  Rainer Wegenkittl,et al.  Analysis of Four-Dimensional Cardiac Data Sets Using Skeleton-Based Segmentation , 2003, WSCG.

[34]  Alessandro Sarti,et al.  Left ventricular volume estimation for real-time three-dimensional echocardiography , 2002, IEEE Transactions on Medical Imaging.

[35]  Marie-Pierre Jolly,et al.  Automatic Segmentation of the Left Ventricle in Cardiac MR and CT Images , 2006, International Journal of Computer Vision.

[36]  Gene H. Golub,et al.  Optimal Surface Smoothing as Filter Design , 1996, ECCV.

[37]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[38]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[39]  Cristian Lorenz,et al.  A comprehensive shape model of the heart , 2006, Medical Image Anal..

[40]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[41]  Dorin Comaniciu,et al.  3D ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Dimitris N. Metaxas,et al.  Volumetric heart modeling and analysis , 2005, CACM.

[43]  Dorin Comaniciu,et al.  Marginal Space Learning for Efficient Detection of 2D/3D Anatomical Structures in Medical Images , 2009, IPMI.

[44]  Rüdiger Dillmann,et al.  Automatic segmentation of the left ventricle and computation of diagnostic parameters using regiongrowing and a statistical model , 2005, SPIE Medical Imaging.

[45]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[46]  O. Gérard,et al.  Efficient model-based quantification of left ventricular function in 3-D echocardiography , 2002, IEEE Transactions on Medical Imaging.

[47]  Rüdiger Dillmann,et al.  Segmentation of the left and right cardiac ventricle using a combined bi-temporal statistical model , 2006, SPIE Medical Imaging.

[48]  Dorin Comaniciu,et al.  Fast and Automatic Heart Isolation in 3D CT Volumes: Optimal Shape Initialization , 2010, MLMI.

[49]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..

[50]  Dorin Comaniciu,et al.  Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features , 2008, IEEE Transactions on Medical Imaging.

[51]  Alejandro F. Frangi,et al.  Active shape model segmentation with optimal features , 2002, IEEE Transactions on Medical Imaging.

[52]  Zhuowen Tu,et al.  Supervised Learning of Edges and Object Boundaries , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[53]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..

[54]  Gernot Brockmann,et al.  Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT for Transcatheter Aortic Valve Implantation , 2012, IEEE Transactions on Medical Imaging.

[55]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[56]  Cristian Lorenz,et al.  Generation of Point-Based 3D Statistical Shape Models for Anatomical Objects , 2000, Comput. Vis. Image Underst..

[57]  Dorin Comaniciu,et al.  Fast Automatic Heart Chamber Segmentation from 3D CT Data Using Marginal Space Learning and Steerable Features , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[58]  David E. Breen,et al.  Dynamic deformable models for 3D MRI heart segmentation , 2002, SPIE Medical Imaging.

[59]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[60]  Dorin Comaniciu,et al.  Hierarchical, learning-based automatic liver segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.