A P ] 8 F eb 2 01 2 Sparse Deterministic Approximation of Bayesian Inverse Problems
暂无分享,去创建一个
[1] Sabine Fenstermacher,et al. Estimation Techniques For Distributed Parameter Systems , 2016 .
[2] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[3] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[4] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[5] Christoph Schwab,et al. Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..
[6] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[7] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[8] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[9] A. Stuart,et al. ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.
[10] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[11] L. Townley. Comment on “ A reassessment of the groundwater inverse problem ” , 1997 .
[12] R. Ghanem,et al. Stochastic Finite Element Expansion for Random Media , 1989 .