A probabilistic framework for edge detection and scale selection

We devise a statistical framework for edge detection by performing a statistical analysis of zero crossings of the second derivative of an image. This analysis enables us to estimate at each pixel of an image the probability that an edge passes through the pixel. We present a statistical analysis of the the Lindeberg operators that we use to compute image derivatives. We also introduce a confidence probability that tells us how reliable the edge probability is, given the image's noise level and the operator's scale. Combining the edge and confidence probabilities leads to a probabilistic scale selection algorithm. We present the results of experiments on natural images.

[1]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[2]  Owen Robert Mitchell,et al.  Precision Edge Contrast and Orientation Estimation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[4]  James J. Clark Authenticating Edges Produced by Zero-Crossing Algorithms , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  E. C. Fieller THE DISTRIBUTION OF THE INDEX IN A NORMAL BIVARIATE POPULATION , 1932 .

[7]  J. Canny A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[10]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[12]  Robert M. Haralick,et al.  Random perturbation models for boundary extraction sequence , 1997, Machine Vision and Applications.

[13]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[14]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[15]  P. H. Gregson,et al.  Using Angular Dispersion of Gradient Direction for Detecting Edge Ribbons , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Paul L. Rosin Edges: saliency measures and automatic thresholding , 1997, Machine Vision and Applications.

[17]  J. Patel,et al.  Handbook of the normal distribution , 1983 .

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .