Recovering Spikes from Noisy Neuronal Calcium Signals via Structured Sparse Approximation
暂无分享,去创建一个
Richard G. Baraniuk | Don H. Johnson | Eva L. Dyer | Marco F. Duarte | Richard Baraniuk | Don H. Johnson
[1] Rafael Yuste,et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.
[2] Deanna Needell,et al. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.
[3] F. Helmchen,et al. In vivo calcium imaging of neural network function. , 2007, Physiology.
[4] Sooyoung Chung,et al. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.
[5] Joel A. Tropp,et al. Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.
[6] Brendon O. Watson,et al. Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.
[7] Marco F. Duarte,et al. Compressive sensing recovery of spike trains using a structured sparsity model , 2009 .
[8] S. Mallat,et al. Adaptive greedy approximations , 1997 .
[9] Morten Nielsen,et al. Beyond sparsity: Recovering structured representations by ${\ell}^1$ minimization and greedy algorithms , 2007, Adv. Comput. Math..
[10] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..