Ultracold Bosons on a Regular Spherical Mesh

Here, the zero-temperature phase behavior of bosonic particles living on the nodes of a regular spherical mesh ("Platonic mesh") and interacting through an extended Bose-Hubbard Hamiltonian has been studied. Only the hard-core version of the model for two instances of Platonic mesh is considered here. Using the mean-field decoupling approximation, it is shown that the system may exist in various ground states, which can be regarded as analogs of gas, solid, supersolid, and superfluid. For one mesh, by comparing the theoretical results with the outcome of numerical diagonalization, I manage to uncover the signatures of diagonal and off-diagonal spatial orders in a finite quantum system.

[1]  Stefan Wessel,et al.  Supersolid hard-core bosons on the triangular lattice. , 2005, Physical review letters.

[2]  Takashi Kimura,et al.  Gutzwiller study of phase diagrams of extended Bose—Hubbard models , 2012 .

[3]  B. Garraway,et al.  Recent developments in trapping and manipulation of atoms with adiabatic potentials , 2016 .

[4]  A. Sergi,et al.  A variational mean-field study of clusterization in a zero-temperature system of soft-core bosons , 2020, EPJ Web of Conferences.

[5]  Yue Yu,et al.  Supersolid phase transitions for hard-core bosons on a triangular lattice , 2011 .

[6]  M. Lewenstein,et al.  Quantum phases of dipolar bosons in optical lattices. , 2001, Physical review letters.

[7]  Seo Ho Youn,et al.  Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.

[8]  P. Straten,et al.  Quantum phases in an optical lattice , 2000, cond-mat/0011108.

[9]  A. Griesmaier,et al.  Bose-Einstein condensation of chromium. , 2005, Physical review letters.

[10]  Tech. U. Vienna,et al.  Criterion for determining clustering versus reentrant melting behavior for bounded interaction potentials. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  M. Ferrario,et al.  Statistical geometry of hard particles on a sphere: analysis of defects at high density , 1993 .

[12]  A. Pelster,et al.  Quantum phase diagram of bosons in optical lattices , 2008, 0806.2812.

[13]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[14]  M. Troyer,et al.  Supersolid phase with cold polar molecules on a triangular lattice. , 2009, Physical review letters.

[15]  Phase diagram of the Bose-Hubbard Model , 1993, cond-mat/9307011.

[16]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[17]  D. Rokhsar,et al.  Gutzwiller projection for bosons. , 1991, Physical review. B, Condensed matter.

[18]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[19]  Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials , 2004 .

[20]  M. Ferrario,et al.  Statistical geometry of hard particles on a sphere , 1992 .

[21]  T. Macrì,et al.  Elementary excitations of ultracold soft-core bosons across the superfluid-supersolid phase transition , 2012, 1212.6934.

[22]  A. Sergi,et al.  Freezing of soft-core bosons at zero temperature: A variational theory , 2018, Physical Review B.

[23]  B. Svistunov,et al.  Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model , 2007, cond-mat/0701178.

[24]  P. Giaquinta,et al.  Density anomaly in a fluid of softly repulsive particles embedded in a spherical surface , 2012 .

[25]  H. R. Krishnamurthy,et al.  Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA , 1993 .

[26]  Schoen,et al.  Quantum phase transitions of interacting bosons and the supersolid phase. , 1995, Physical review. B, Condensed matter.

[27]  P. Viot,et al.  Glassy dynamics of dense particle assemblies on a spherical substrate. , 2018, The Journal of chemical physics.

[28]  F. Saija,et al.  Phase diagram of Gaussian-core nematics. , 2007, The Journal of chemical physics.

[29]  Caffarel,et al.  Gutzwiller wave function for a model of strongly interacting bosons. , 1992, Physical review. B, Condensed matter.

[30]  F. Saija,et al.  Hexatic phase and cluster crystals of two-dimensional GEM4 spheres. , 2014, The Journal of chemical physics.

[31]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[32]  Pablo G. Debenedetti,et al.  Relationship between structural order and the anomalies of liquid water , 2001, Nature.

[33]  Synge Todo,et al.  Successive phase transitions at finite temperatures toward the supersolid state in a three-dimensional extended Bose-Hubbard model , 2008, 0807.0948.

[34]  L. Reatto,et al.  Formation of cluster crystals in an ultra-soft potential model on a spherical surface. , 2018, Soft matter.

[35]  R. Scalettar,et al.  Mott domains of bosons confined on optical lattices. , 2002, Physical review letters.

[36]  P. Giaquinta,et al.  Ground state of weakly repulsive soft-core bosons on a sphere , 2019, Physical Review A.

[37]  Bianca M. Mladek,et al.  Multiple occupancy crystals formed by purely repulsive soft particles , 2008 .

[38]  J. M. Kurdestany,et al.  The inhomogeneous extended Bose‐Hubbard model: A mean‐field theory , 2012, 1201.6451.

[39]  S. Sinha,et al.  Density wave and supersolid phases of correlated bosons in an optical lattice , 2004, cond-mat/0410512.

[40]  A. Pelster,et al.  Improving mean-field theory for bosons in optical lattices via degenerate perturbation theory , 2018, Physical Review A.

[41]  P. Chaikin,et al.  Freezing on a sphere , 2018, Nature.

[42]  Supersolids versus phase separation in two-dimensional lattice bosons. , 2004, Physical review letters.

[43]  Robert J. Thompson,et al.  NASA’s Cold Atom Lab (CAL): system development and ground test status , 2018, npj Microgravity.

[44]  E. Glandt,et al.  Statistical thermodynamics of particles adsorbed onto a spherical surface. I. Canonical ensemble , 1986 .

[45]  N. Lundblad,et al.  Shell potentials for microgravity Bose–Einstein condensates , 2019, npj Microgravity.