On the Solutions of the Interval System [x] = [A][x] + [b]

For the interval system of equations defined by [x] = [A][x]+[b]withρ(|[A])|≥1 we derive a necessary and sufficient criterion for the existence and uniqueness of solutions [x]. Generalizing former results we allow the absolute value |[A]| of [A] to be reducible.

[1]  Sergey P. Shary,et al.  A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity , 2002, Reliab. Comput..

[2]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[3]  Günter Mayer,et al.  On the fixed points of the interval function [f]([x])=[A][x]+[b] , 2003 .

[4]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[5]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[6]  Günter Mayer,et al.  On the Limit of the Total Step Method in Interval Analysis , 2001, Perspectives on Enclosure Methods.

[7]  Jiří Rohn,et al.  Linear Interval Equations: Computing Enclosures with Bounded Relative Overestimation is NP-Hard , 1996 .

[8]  Wilhelm Barth,et al.  Optimale Lösung von Intervallgleichungssystemen , 2005, Computing.

[9]  A. Neumaier Interval methods for systems of equations , 1990 .

[10]  Sergey P. Shary,et al.  Algebraic Approach in the "Outer Problem" for Interval Linear Equations , 1997, Reliab. Comput..

[11]  Helmut Ratschek,et al.  Linear interval equations , 2005, Computing.

[12]  Götz Alefeld,et al.  Enclosing Solutions of Singular Interval Systems Iteratively , 2005, Reliab. Comput..

[13]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[14]  Götz Alefeld,et al.  On Singular Interval Systems , 2003, Numerical Software with Result Verification.

[15]  Lambert Jorba,et al.  Formal Solution to Systems of Interval Linear or Non-Linear Equations , 2002, Reliab. Comput..

[17]  G. Mayer,et al.  On the semi-convergence of interval matrices , 2004 .