Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?

This paper empirically investigates two alternative combination strategies, namely forecast combination and information pooling, in the context of nowcasting French GDP in real time with monthly survey opinions. According to the encompassing paradigm, we claim that the outperformance of the forecast combination strategy reported by recent works may be related to the issues of model selection and misspecification. To address these issues, we promote the blocking modeling approach to allow us to handle mixed frequencies in a linear framework that is compatible with an automatic model selection algorithm. Selected restricted- and pooled-information models are specified and tested for forecast encompassing in order to determine the best combination strategy. The results suggest that the forecast combination strategy dominates as long as no individual (restricted) model encompasses the rivals. However, when a predictive encompassing model is obtained by pooling the information sets, this model outperforms the most accurate forecast combination scheme.

[1]  Massimiliano Marcellino,et al.  Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility , 2012, Journal of the Royal Statistical Society. Series A,.

[2]  Massimiliano Marcellino,et al.  Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials , 2015 .

[3]  J. Stock,et al.  A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series , 1998 .

[4]  C. Granger,et al.  Improved methods of combining forecasts , 1984 .

[5]  Francis X. Diebold,et al.  Forecast combination and encompassing: Reconciling two divergent literatures , 1989 .

[6]  Econometric Modeling: A Likelihood Approach , 2007 .

[7]  Sune Karlsson,et al.  Finding Good Predictors for Inflation: A Bayesian Model Averaging Approach , 2004 .

[8]  R. Golinelli,et al.  Bridge models to forecast the euro area GDP , 2004 .

[9]  Todd E. Clark,et al.  The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence , 2003 .

[10]  Michael P. Clements,et al.  Combining Predictors and Combining Information in Modelling: Forecasting US Recession Probabilities and Output Growth , 2006 .

[11]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[12]  Lutz Kilian,et al.  On the Selection of Forecasting Models , 2003, SSRN Electronic Journal.

[13]  Christian Schumacher,et al.  POOLING VERSUS MODEL SELECTION FOR NOWCASTING GDP WITH MANY PREDICTORS: EMPIRICAL EVIDENCE FOR SIX INDUSTRIALIZED COUNTRIES , 2013 .

[14]  David H. Small,et al.  Nowcasting: the real time informational content of macroeconomic data releases , 2008 .

[15]  Jeremy Piger,et al.  The Use and Abuse of 'Real-Time' Data in Economic Forecasting , 2000 .

[16]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[17]  Marie Diron,et al.  Short-Term Forecasts of Euro Area Real GDP Growth: An Assessment of Real-Time Performance Based on Vintage Data , 2006, SSRN Electronic Journal.

[18]  Michael P. Clements,et al.  Macroeconomic Forecasting With Mixed-Frequency Data , 2008 .

[19]  D. Giannone,et al.  Now-Casting and the Real-time Data Flow , 2012, SSRN Electronic Journal.

[20]  M. Bessec Etalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture , 2010 .

[21]  Kevin D. Hoover,et al.  Data mining reconsidered: encompassing and the general-to-specific approach to specification search , 1997 .

[22]  Dean D. Croushore,et al.  Frontiers of Real-Time Data Analysis , 2008 .

[23]  Eric Ghysels,et al.  Regression Models with Mixed Sampling Frequencies , 2010 .

[24]  J. Stock,et al.  A Comparison of Direct and Iterated Multistep Ar Methods for Forecasting Macroeconomic Time Series , 2005 .

[25]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[26]  Brian D. O. Anderson,et al.  Properties of blocked linear systems☆ , 2012, Autom..

[27]  A. Timmermann Chapter 4 Forecast Combinations , 2006 .

[28]  Jean-Francois Richard,et al.  The Encompassing Principle and Its Application to Testing Non-nested Hypotheses , 1986 .

[29]  David F. Hendry,et al.  Recent developments in the theory of encompassing , 1987 .

[30]  F. Diebold,et al.  Forecast Evaluation and Combination , 1996 .

[31]  Olivier Darné,et al.  DIRECTION GÉNÉRALE DES ÉTUDES ET DES RELATIONS INTERNATIONALES DIRECTION GÉNÉRALE DES ÉTUDES ET DES RELATIONS INTERNATIONALES NEW ESTIMATE OF THE MIBA FORECASTING MODEL. MODELING FIRST-RELEASE GDP USING THE BANQUE DE FRANCE’S MONTHLY BUSINESS SURVEY AND THE “BLOCKING” APPROACH , 2014 .

[32]  Jana Eklund,et al.  Forecast Combination and Model Averaging Using Predictive Measures , 2005 .

[33]  E. Ghysels,et al.  Why Do Absolute Returns Predict Volatility So Well , 2006 .

[34]  Gerhard Rünstler,et al.  Short-Term Estimates of Euro Area Real GDP by Means of Monthly Data , 2003, SSRN Electronic Journal.

[35]  K. Wallis,et al.  A Simple Explanation of the Forecast Combination Puzzle , 2009 .

[36]  E. Dubois,et al.  Étalonnages à l'aide d'enquêtes de conjoncture : de nouveaux résultats , 2006 .

[37]  Grayham E. Mizon,et al.  The encompassing approach in econometrics , 1984 .

[38]  D. Hendry,et al.  Econometric Evaluation of Linear Macro-Economic Models , 1986 .

[39]  Massimiliano Marcellino,et al.  Midas Vs. Mixed-Frequency VAR: Nowcasting GDP in the Euro Area , 2009 .

[40]  David F. Hendry,et al.  Automatic selection of indicators in a fully saturated regression , 2008, Comput. Stat..

[41]  Dimitris Korobilis,et al.  Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predictors , 2011 .

[42]  Allan Timmermann,et al.  Persistence in forecasting performance and conditional combination strategies , 2006 .

[43]  C. Granger,et al.  Experience with Forecasting Univariate Time Series and the Combination of Forecasts , 1974 .

[44]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[45]  J. Stock,et al.  Why Has U.S. Inflation Become Harder to Forecast , 2007 .

[46]  David F. Hendry,et al.  Computer Automation of General-to-Specific Model Selection Procedures , 2001 .

[47]  Francis X. Diebold,et al.  Serial Correlation and the Combination of Forecasts , 1988 .

[48]  Michael P. Clements,et al.  Forecasting US output growth using leading indicators: an appraisal using MIDAS models , 2009 .

[49]  Ray C. Fair,et al.  The Informational Context of Ex Ante Forecasts , 1989 .

[50]  Michael P. Clements,et al.  Real-time forecasting of inflation and output growth with autoregressive models in the presence of data revisions , 2013 .

[51]  Tae-Hwy Lee,et al.  To Combine Forecasts or to Combine Information? , 2010 .

[52]  E. Ghysels,et al.  MIDAS Regressions: Further Results and New Directions , 2006 .

[53]  Francis X. Diebold,et al.  The use of prior information in forecast combination , 1990 .