Identification and estimation of marginal effects in nonlinear panel models

This paper gives identification and estimation results for marginal effects in nonlinear panel models. We find that linear fixed effects estimators are not consistent, due in part to marginal effects not being identified. We derive bounds for marginal effects and show that they can tighten rapidly as the number of time series observations grows. We also show in numerical calculations that the bounds may be very tight for small numbers of observations, suggesting they may be useful in practice. We propose two novel inference methods for parameters defined as solutions to linear and nonlinear programs such as marginal effects in multinomial choice models. We show that these methods produce uniformly valid confidence regions in large samples. We give an empirical illustration.

[1]  J. Angrist,et al.  Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants , 1995 .

[2]  M. Arellano,et al.  The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators , 2003 .

[3]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[4]  W. Feller On a General Class of "Contagious" Distributions , 1943 .

[5]  Erling B. Andersen,et al.  Conditional Inference and Models for Measuring , 1974 .

[6]  Dean Hyslop,et al.  Identification and Estimation of Dynamic Binary Response Panel Data Models : Empirical Evidence using Alternative Approaches , 1998 .

[7]  Bo E. Honoré,et al.  Bounds on Parameters in Panel Dynamic Discrete Choice Models , 2006 .

[8]  J. Heckman,et al.  Corrigendum on A Life Cycle Model of Female Labour Supply , 1982 .

[9]  D. Hyslop,et al.  State dependence, serial correlation and heterogeneity in intertemporal labor force , 1999 .

[10]  M. Aitkin A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models , 1999, Biometrics.

[11]  Bryan S. Graham,et al.  Identification and Estimation of &Apos;Irregular&Apos; Correlated Random Coefficient Models , 2008 .

[12]  B. Lindsay The Geometry of Mixture Likelihoods, Part II: The Exponential Family , 1983 .

[13]  C. Manski,et al.  Inference on Regressions with Interval Data on a Regressor or Outcome , 2002 .

[14]  Z. D. Feng,et al.  Using Bootstrap Likelihood Ratio in Finite Mixture Models , 1994 .

[15]  Jinyong Hahn Comment: Binary Regressors in Nonlinear Panel-Data Models with Fixed Effects , 2001 .

[16]  K. Judd Numerical methods in economics , 1998 .

[17]  Richard Blundell,et al.  Endogeneity in Nonparametric and Semiparametric Regression Models , 2022 .

[18]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[19]  B. Lindsay The Geometry of Mixture Likelihoods: A General Theory , 1983 .

[20]  J. Kiefer,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .

[21]  Martin Browning,et al.  Heterogeneity and Microeconometrics Modelling , 2006 .

[22]  O. Rytchkov Essays on predictability of stock returns , 2007 .

[23]  Bruce G. Lindsay,et al.  A review of semiparametric mixture models , 1995 .

[24]  Gary Chamberlain,et al.  Analysis of Covariance with Qualitative Data , 1979 .

[25]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[26]  E. B. Andersen,et al.  Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .

[27]  G. Chamberlain Multivariate regression models for panel data , 1982 .

[28]  Francesca Molinari,et al.  Asymptotic Properties for a Class of Partially Identified Models , 2006 .

[29]  Jinyong Hahn,et al.  Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects When Both N and T are Large , 2000 .

[30]  Jeffrey M. Woodbridge Econometric Analysis of Cross Section and Panel Data , 2002 .

[31]  Joseph P. Romano Finite sample nonparametric inference and large sample efficiency , 1998 .

[32]  J. Wooldridge Fixed-Effects and Related Estimators for Correlated Random-Coefficient and Treatment-Effect Panel Data Models , 2005, Review of Economics and Statistics.

[33]  Jean-Marie Dufour,et al.  Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and nonstandard , 2006 .

[34]  Jinyong Hahn,et al.  JACKKNIFE AND ANALYTICAL BIAS REDUCTION FOR NONLINEAR PANEL MODELS , 2003 .

[35]  James J. Heckman,et al.  A Life Cycle Model of Female Labour Supply , 1980 .

[36]  C. Manski Nonparametric Bounds on Treatment Effects , 1989 .

[37]  Jesus M. Carro Estimating Dynamic Panel Data Discrete Choice Models with Fixed Effects , 2003 .

[38]  Tiemen Woutersen Robustness against Incidental Parameters , 2002 .

[39]  Bo E. Honoré,et al.  Bounds on Parameters in Dynamic Discrete Choice Models , 2002 .

[40]  N. Laird Nonparametric Maximum Likelihood Estimation of a Mixing Distribution , 1978 .

[41]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[42]  Joel L. Horowitz,et al.  Identification and Robustness with Contaminated and Corrupted Data , 1995 .

[43]  Han Hong,et al.  Parameter Set Inference in a Class of Econometric Models , 2004 .

[44]  Raquel Carrasco,et al.  Binary Choice with Binary Endogenous Regressors in Panel Data: Estimating the Effect of Fertility on Female Labor Participation , 1998 .

[45]  D. Böhning A review of reliable maximum likelihood algorithms for semiparametric mixture models , 1995 .

[46]  Gary Chamberlain,et al.  Binary Response Models for Panel Data: Identification and Information , 2010 .

[47]  Ivan Fernandez-Val,et al.  Fixed effects estimation of structural parameters and marginal effects in panel probit models , 2007 .

[48]  Victor Chernozhukov,et al.  Bound Analysis in Panel Models with Correlated Random Eects , 2005 .

[49]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .

[50]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.