Effect of Deposition Conditions on Mechanical Properties of Low-Temperature PECVD Silicon Nitride Films

The effect of deposition conditions on characteristic mechanical properties – elastic modulus and hardness – of low-temperature PECVD silicon nitrides is investigated using nanoindentation. It is found that increase in substrate temperature, increase in plasma power and decrease in chamber gas pressure all result in increases in elastic modulus and hardness. Strong correlations between the mechanical properties and film density are demonstrated. The silicon nitride density in turn is shown to be related to the chemical composition of the films, particularly the silicon/nitrogen ratio.

[1]  J. Lee,et al.  New applications of low temperature PECVD silicon nitride films for microelectronic device fabrication , 1991 .

[2]  George M. Pharr,et al.  Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy , 1996 .

[3]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[4]  Mariusz Martyniuk,et al.  Determination of residual stress in low-temperature PECVD silicon nitride thin films , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[5]  B. Lawn,et al.  A simple indentation stress strain relation for contacts with spheres on bilayer structures , 1998 .

[6]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[7]  Lorenzo Faraone,et al.  Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry–Pérot optical filters , 2005 .

[8]  Ludvik Martinu,et al.  Single-material inhomogeneous optical filters based on microstructural gradients in plasma-deposited silicon nitride. , 2004, Applied optics.

[9]  Alexei Bolshakov,et al.  Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations , 1996 .

[10]  M. Hugon,et al.  Low temperature deposition of silicon nitride films by distributed electron cyclotron resonance plasma‐enhanced chemical vapor deposition , 1995 .

[11]  W. Nix,et al.  Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates , 1988 .

[12]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[13]  G. Hubler,et al.  Near infrared rugate filter fabrication by ion beam assisted deposition of Si((1-x))N(x) films. , 1989, Applied optics.

[14]  P. Swart,et al.  Properties and applications of electron cyclotron plasma deposited SiOxNy films with graded refractive index profiles , 1995 .

[15]  Bustarret,et al.  Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis. , 1988, Physical review. B, Condensed matter.

[16]  Donald L. Smith,et al.  Mechanism of SiN x H y Deposition from NH 3 ‐ SiH4 Plasma , 1990 .

[17]  J. Dell,et al.  Tunable Fabry-Pérot cavities fabricated from PECVD silicon nitride employing zinc sulphide as the sacrificial layer , 2001 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  B. Lawn,et al.  Evaluation of elastic modulus and hardness of thin films by nanoindentation , 2004 .

[20]  Donald L. Smith,et al.  Mechanism of SiNxHy deposition from N2–SiH4 plasma , 1990 .

[21]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[22]  D. Hills,et al.  A note on the influence of residual stress on measured hardness , 1984 .

[23]  Andrew G. Glen,et al.  APPL , 2001 .