Pointwise a Posteriori Error Analysis for an Adaptive Penalty Finite Element Method for the Obstacle Problem

Abstract Finite element approximations based on a penalty formulation of the elliptic obstacle problem are analyzed in the maximum norm. A posteriori error estimates, which involve a residual of the approximation and a spatially variable penalty parameter, are derived in the cases of both smooth and rough obstacles. An adaptive algorithm is suggested and implemented in one dimension.

[1]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[2]  A. Friedman Variational principles and free-boundary problems , 1982 .

[3]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[4]  R. Scholz,et al.  Numerical solution of the obstacle problem by the penalty method , 1986 .

[5]  Ricardo H. Nochetto,et al.  SharpL∞-error estimates for semilinear elliptic problems with free boundaries , 1989 .

[6]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[7]  Ricardo H. Nochetto,et al.  AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .

[8]  Ricardo H. Nochetto,et al.  An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..

[9]  Monique Dauge,et al.  Neumann and mixed problems on curvilinear polyhedra , 1992 .

[10]  Claes Johnson,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .

[11]  V. Adolfsson Lp-integrability of the second order derivatives of Green potentials in convex domains , 1993 .

[12]  J. Tinsley Oden,et al.  Local a posteriori error estimators for variational inequalities , 1993 .

[13]  Stephen J. Fromm,et al.  Potential space estimates for Green potentials in convex domains , 1993 .

[14]  R. Hoppe,et al.  Adaptive multilevel methods for obstacle problems , 1994 .

[15]  R. Kornhuber Monotone multigrid methods for elliptic variational inequalities I , 1994 .

[16]  Kenneth Eriksson,et al.  AN ADAPTIVE FINITE ELEMENT METHOD WITH EFFICIENT MAXIMUM NORM ERROR CONTROL FOR ELLIPTIC PROBLEMS , 1994 .

[17]  P. Grisvard,et al.  Singular behavior of elliptic problems in non Hilbertian Sobolev spaces , 1995 .

[18]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error estimates for elliptic problems on highly graded meshes , 1995 .

[19]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic variational inequalities , 1996 .

[20]  Ricardo G. Durán,et al.  Maximum Norm Error Estimators for Three-Dimensional Elliptic Problems , 1999, SIAM J. Numer. Anal..

[21]  Mats Boman APosteriori Error Analysis in themaximumnorm for a penalty finite element method for the time-dependent obstacle problem , 2000 .

[22]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[23]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[24]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error control for elliptic obstacle problems , 2003, Numerische Mathematik.