Pointwise a Posteriori Error Analysis for an Adaptive Penalty Finite Element Method for the Obstacle Problem
暂无分享,去创建一个
[1] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[2] A. Friedman. Variational principles and free-boundary problems , 1982 .
[3] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[4] R. Scholz,et al. Numerical solution of the obstacle problem by the penalty method , 1986 .
[5] Ricardo H. Nochetto,et al. SharpL∞-error estimates for semilinear elliptic problems with free boundaries , 1989 .
[6] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[7] Ricardo H. Nochetto,et al. AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .
[8] Ricardo H. Nochetto,et al. An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..
[9] Monique Dauge,et al. Neumann and mixed problems on curvilinear polyhedra , 1992 .
[10] Claes Johnson,et al. ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .
[11] V. Adolfsson. Lp-integrability of the second order derivatives of Green potentials in convex domains , 1993 .
[12] J. Tinsley Oden,et al. Local a posteriori error estimators for variational inequalities , 1993 .
[13] Stephen J. Fromm,et al. Potential space estimates for Green potentials in convex domains , 1993 .
[14] R. Hoppe,et al. Adaptive multilevel methods for obstacle problems , 1994 .
[15] R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities I , 1994 .
[16] Kenneth Eriksson,et al. AN ADAPTIVE FINITE ELEMENT METHOD WITH EFFICIENT MAXIMUM NORM ERROR CONTROL FOR ELLIPTIC PROBLEMS , 1994 .
[17] P. Grisvard,et al. Singular behavior of elliptic problems in non Hilbertian Sobolev spaces , 1995 .
[18] Ricardo H. Nochetto,et al. Pointwise a posteriori error estimates for elliptic problems on highly graded meshes , 1995 .
[19] Ralf Kornhuber,et al. A posteriori error estimates for elliptic variational inequalities , 1996 .
[20] Ricardo G. Durán,et al. Maximum Norm Error Estimators for Three-Dimensional Elliptic Problems , 1999, SIAM J. Numer. Anal..
[21] Mats Boman. APosteriori Error Analysis in themaximumnorm for a penalty finite element method for the time-dependent obstacle problem , 2000 .
[22] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[23] Andreas Veeser,et al. Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..
[24] Ricardo H. Nochetto,et al. Pointwise a posteriori error control for elliptic obstacle problems , 2003, Numerische Mathematik.