Experimental Demonstration and Calibration of a 16-Element Active Incoherent Millimeter-Wave Imaging Array

In this article, an active incoherent millimeter-wave imaging array is presented, along with its calibration procedure. Active incoherent millimeter-wave imaging uses the transmission of incoherent signals from multiple transmitters to mimic the properties of thermal radiation, enabling interferometric image reconstruction that can be realized in a snap-shot mode, without beamsteering. Due to the use of transmitters, the sensitivity requirement on the receivers is significantly relaxed compared with passive millimeter-wave imaging systems that detect low-power thermal radiation, making it possible to use standard commercial hardware, therefore decreasing the cost considerably. No exact knowledge of the transmit illumination is needed; thus, the coordination of the transmitters is minimal, further simplifying the system implementation. In this work, a 16-element $K_{a}$ -band millimeter-wave imager is built and presented using commercial components and in-house fabricated antennas, along with a calibration procedure to account for amplitude and phase variations in the hardware. Experimental 2-D snapshot image reconstructions are presented.

[1]  Fernando Las-Heras,et al.  Fourier-Based Imaging for Multistatic Radar Systems , 2014, IEEE Transactions on Microwave Theory and Techniques.

[2]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[3]  M. Wieringa An investigation of the telescope based calibration methods ‘redundancy’ and ‘self-cal’ , 1992 .

[4]  G. Ponchak,et al.  Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz , 2004, IEEE Transactions on Microwave Theory and Techniques.

[5]  N. Llombart,et al.  Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.

[6]  Ettien Kpré,et al.  Computational Imaging for Compressive Synthetic Aperture Interferometric Radiometer , 2018, IEEE Transactions on Antennas and Propagation.

[7]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[8]  Andrew R. Harvey,et al.  First video rate imagery from a 32-channel 22-GHz aperture synthesis passive millimetre wave imager , 2011, Security + Defence.

[9]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[10]  John Papapolymerou,et al.  40-GHz Active Interferometric Imaging with Noise Transmitters , 2019, 2019 16th European Radar Conference (EuRAD).

[11]  Jeffrey A. Nanzer,et al.  Analysis of Array Sparsity in Active Incoherent Microwave Imaging , 2020, IEEE Geoscience and Remote Sensing Letters.

[12]  David R. Smith,et al.  Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures , 2018, Optica.

[13]  A. Stelzer,et al.  A 77-GHz FMCW MIMO Radar Based on an SiGe Single-Chip Transceiver , 2009, IEEE Transactions on Microwave Theory and Techniques.

[14]  Jeffrey A. Nanzer,et al.  Imaging With WiFi , 2019, IEEE Access.

[15]  Nuria Llombart,et al.  THz Imaging Radar for Standoff Personnel Screening , 2011, IEEE Transactions on Terahertz Science and Technology.

[16]  Panagiotis C. Theofanopoulos,et al.  Multistatic Terahertz Imaging Using the Radon Transform , 2019, IEEE Transactions on Antennas and Propagation.

[17]  Christopher J. Taylor,et al.  First imagery generated by near-field real-time aperture synthesis passive millimetre wave imagers at 94 GHz and 183 GHz , 2010, Security + Defence.

[18]  Jeffrey A. Nanzer,et al.  Microwave Imaging Using Noise Signals , 2018, IEEE Transactions on Microwave Theory and Techniques.

[19]  Cheng Zheng,et al.  A Passive Millimeter-Wave Imager Used for Concealed Weapon Detection , 2013 .

[20]  Alan B. Tanner,et al.  Calibration of a synthetic aperture radiometer , 1993, IEEE Trans. Geosci. Remote. Sens..

[21]  Adriano Camps,et al.  The processing of hexagonally sampled signals with standard rectangular techniques: application to 2-D large aperture synthesis interferometric radiometers , 1997, IEEE Trans. Geosci. Remote. Sens..

[22]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[23]  J.A. Nanzer,et al.  A Ka-band Correlation Radiometer for Human Presence Detection from a Moving Platform , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[24]  Jeffrey A. Nanzer,et al.  Microwave and Millimeter-Wave Remote Sensing for Security Applications , 2020 .

[25]  Jun Wang,et al.  Microwave Imaging Customized on Demand Under Random Field Illumination , 2019, IEEE Transactions on Microwave Theory and Techniques.

[26]  John Papapolymerou,et al.  Conformal Antipodal Vivaldi Antenna With Parasitic Elements For 5G Millimeter Wave Applications , 2019, 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting.

[27]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[28]  Thomas Fromenteze,et al.  Single-frequency microwave imaging with dynamic metasurface apertures , 2017, 1704.03303.

[29]  Jeffrey A. Nanzer,et al.  Transmit Pattern Analysis for Active Incoherent Microwave Imaging , 2019, 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting.

[30]  Xu Li,et al.  Microwave imaging via space-time beamforming for early detection of breast cancer , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[31]  Matias Zaldarriaga,et al.  Precision calibration of radio interferometers using redundant baselines , 2010, 1001.5268.

[32]  Jeffrey A. Nanzer,et al.  An Active Microwave Imaging Technique Using Spatial Frequency Sampling , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[33]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[34]  Changzhi Li,et al.  A Portable FMCW Interferometry Radar With Programmable Low-IF Architecture for Localization, ISAR Imaging, and Vital Sign Tracking , 2017, IEEE Transactions on Microwave Theory and Techniques.

[35]  N. Nikolova Microwave Imaging for Breast Cancer , 2011, IEEE Microwave Magazine.

[36]  Arnulf Leuther,et al.  ${W}$ -Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging , 2017, IEEE Transactions on Microwave Theory and Techniques.