Cell adhesion molecules: signalling functions at the synapse

[1]  Tsutomu Hashikawa,et al.  Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin , 2007, Nature Neuroscience.

[2]  M. Dalva,et al.  Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors , 2006, The Journal of Neuroscience.

[3]  Henrik Jörntell,et al.  Synaptic Memories Upside Down: Bidirectional Plasticity at Cerebellar Parallel Fiber-Purkinje Cell Synapses , 2006, Neuron.

[4]  M. Schachner,et al.  NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex , 2006, The Journal of cell biology.

[5]  Thomas C. Südhof,et al.  Neuroligins Determine Synapse Maturation and Function , 2006, Neuron.

[6]  R. Weinberg,et al.  NGL family PSD-95–interacting adhesion molecules regulate excitatory synapse formation , 2006, Nature Neuroscience.

[7]  P. Scheiffele,et al.  Alternative Splicing Controls Selective Trans-Synaptic Interactions of the Neuroligin-Neurexin Complex , 2006, Neuron.

[8]  L. Reichardt,et al.  p120 Catenin Regulates Dendritic Spine and Synapse Development through Rho-Family GTPases and Cadherins , 2006, Neuron.

[9]  Robert Moore,et al.  Development/plasticity/repair N-cadherin Transsynaptically Regulates Short-term Plasticity at Glutamatergic Synapses in Embryonic Stem Cell-derived Neurons the Cell Adhesion Molecule N-cadherin Has Been Proposed to Regulate Synapse Formation in Mammalian Central Neurons. This Is Based on Its Synapti , 2022 .

[10]  M. Schachner,et al.  The extracellular matrix and synapses , 2006, Cell and Tissue Research.

[11]  R. Huganir,et al.  Regulation of AMPA receptor trafficking by N‐cadherin , 2006, Journal of neurochemistry.

[12]  B. Kaang,et al.  SALM Synaptic Cell Adhesion-like Molecules Regulate the Differentiation of Excitatory Synapses , 2006, Neuron.

[13]  A. Craig,et al.  Structure Function and Splice Site Analysis of the Synaptogenic Activity of the Neurexin-1β LNS Domain , 2006, The Journal of Neuroscience.

[14]  E. J. Green,et al.  Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. , 2006, Developmental biology.

[15]  S. Heinemann,et al.  B-Ephrin Reverse Signaling Is Required for NMDA-Independent Long-Term Potentiation of Mossy Fibers in the Hippocampus , 2006, The Journal of Neuroscience.

[16]  D. Benson,et al.  Structural basis for developmentally regulated changes in cadherin function at synapses , 2006, The Journal of comparative neurology.

[17]  Jun Xia,et al.  Targeted In Vivo Mutations of the AMPA Receptor Subunit GluR2 and Its Interacting Protein PICK1 Eliminate Cerebellar Long-Term Depression , 2006, Neuron.

[18]  V. Berezin,et al.  Hippocampal up‐regulation of NCAM expression and polysialylation plays a key role on spatial memory , 2006, The European journal of neuroscience.

[19]  R. Petralia,et al.  A Novel Family of Adhesion-Like Molecules That Interacts with the NMDA Receptor , 2006, The Journal of Neuroscience.

[20]  L. Reichardt,et al.  EphB Receptors Regulate Dendritic Spine Morphogenesis through the Recruitment/Phosphorylation of Focal Adhesion Kinase and RhoA Activation* , 2006, Journal of Biological Chemistry.

[21]  A. El-Husseini,et al.  A Preformed Complex of Postsynaptic Proteins Is Involved in Excitatory Synapse Development , 2006, Neuron.

[22]  Thomas C. Südhof,et al.  A Splice Code for trans-Synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to α- and β-Neurexins , 2005, Neuron.

[23]  C. Garner,et al.  Mechanisms of vertebrate synaptogenesis. , 2005, Annual review of neuroscience.

[24]  O. Prange,et al.  Neuroligins Mediate Excitatory and Inhibitory Synapse Formation , 2005, Journal of Biological Chemistry.

[25]  T. Südhof,et al.  Extracellular Domains of α-Neurexins Participate in Regulating Synaptic Transmission by Selectively Affecting N- and P/Q-Type Ca2+ Channels , 2005, The Journal of Neuroscience.

[26]  Lu Chen,et al.  Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Pasquale,et al.  EphrinB–EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1 , 2005, Nature Cell Biology.

[28]  P. Scheiffele,et al.  Control of Excitatory and Inhibitory Synapse Formation by Neuroligins , 2005, Science.

[29]  T. Südhof,et al.  Selective Capability of SynCAM and Neuroligin for Functional Synapse Assembly , 2005, The Journal of Neuroscience.

[30]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[31]  M. Schachner,et al.  Neural Cell Adhesion Molecule-associated Polysialic Acid Potentiates α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor Currents* , 2004, Journal of Biological Chemistry.

[32]  Alexander E. Dityatev,et al.  Polysialylated Neural Cell Adhesion Molecule Promotes Remodeling and Formation of Hippocampal Synapses , 2004, The Journal of Neuroscience.

[33]  Priscilla Wu,et al.  Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment , 2004, Cell.

[34]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[35]  Yu Tian Wang,et al.  A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Alcino J. Silva,et al.  Deletion of the Neuron-Specific Protein Delta-Catenin Leads to Severe Cognitive and Synaptic Dysfunction , 2004, Current Biology.

[37]  P. Scheiffele,et al.  Disorder-associated mutations lead to functional inactivation of neuroligins. , 2004, Human molecular genetics.

[38]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[39]  Akira Terashima,et al.  Regulation of Synaptic Strength and AMPA Receptor Subunit Composition by PICK1 , 2004, The Journal of Neuroscience.

[40]  V. Berezin,et al.  A Synthetic Neural Cell Adhesion Molecule Mimetic Peptide Promotes Synaptogenesis, Enhances Presynaptic Function, and Facilitates Memory Consolidation , 2004, The Journal of Neuroscience.

[41]  M. Takeichi,et al.  Stability of dendritic spines and synaptic contacts is controlled by αN-catenin , 2004, Nature Neuroscience.

[42]  Cornelia I Bargmann,et al.  Synaptic Specificity Is Generated by the Synaptic Guidepost Protein SYG-2 and Its Receptor, SYG-1 , 2004, Cell.

[43]  Albert David,et al.  X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. , 2004, American journal of human genetics.

[44]  H. Wigström,et al.  Expression of dominant negative cadherin in the adult mouse brain modifies rearing behavior , 2004, Molecular and Cellular Neuroscience.

[45]  Olena Bukalo,et al.  Conditional Ablation of the Neural Cell Adhesion Molecule Reduces Precision of Spatial Learning, Long-Term Potentiation, and Depression in the CA1 Subfield of Mouse Hippocampus , 2004, The Journal of Neuroscience.

[46]  Michelle N. Ngo,et al.  Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus , 2003, The Journal of cell biology.

[47]  O. Hobert,et al.  New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. , 2003, Annual review of neuroscience.

[48]  V. Berezin,et al.  Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning , 2003, Neuroscience.

[49]  W. Birchmeier,et al.  Role of β-Catenin in Synaptic Vesicle Localization and Presynaptic Assembly , 2003, Neuron.

[50]  M. Sheng,et al.  Some assembly required: the development of neuronal synapses , 2003, Nature Reviews Molecular Cell Biology.

[51]  E. Isacoff,et al.  Neurexin mediates the assembly of presynaptic terminals , 2003, Nature Neuroscience.

[52]  T. Südhof,et al.  α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis , 2003, Nature.

[53]  Thomas Bourgeron,et al.  Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism , 2003, Nature Genetics.

[54]  Cornelia I. Bargmann,et al.  The Immunoglobulin Superfamily Protein SYG-1 Determines the Location of Specific Synapses in C. elegans , 2003, Cell.

[55]  K. Murai,et al.  Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling , 2003, Nature Neuroscience.

[56]  R. Huganir,et al.  Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin , 2003, Neuron.

[57]  Melitta Schachner,et al.  Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts , 2002, The Journal of cell biology.

[58]  Y. Yamaguchi,et al.  EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP , 2002, Nature Neuroscience.

[59]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[60]  T. Südhof,et al.  SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly , 2002, Science.

[61]  E. Schuman,et al.  Depolarization Drives β-Catenin into Neuronal Spines Promoting Changes in Synaptic Structure and Function , 2002, Neuron.

[62]  M. Takeichi,et al.  Cadherin Regulates Dendritic Spine Morphogenesis , 2002, Neuron.

[63]  K. Kullander,et al.  Mechanisms and functions of eph and ephrin signalling , 2002, Nature Reviews Molecular Cell Biology.

[64]  Jacqueline H. Finger,et al.  Deletion in Catna2, encoding αN-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation , 2002, Nature Genetics.

[65]  S. Heinemann,et al.  Trans-Synaptic Eph Receptor-Ephrin Signaling in Hippocampal Mossy Fiber LTP , 2002, Science.

[66]  K. Murai,et al.  Contactin Supports Synaptic Plasticity Associated with Hippocampal Long-Term Depression but Not Potentiation , 2002, Current Biology.

[67]  T. Südhof,et al.  CASK and Protein 4.1 Support F-actin Nucleation on Neurexins* , 2001, The Journal of Biological Chemistry.

[68]  T. Bonhoeffer,et al.  Kinase-Independent Requirement of EphB2 Receptors in Hippocampal Synaptic Plasticity , 2001, Neuron.

[69]  T. Pawson,et al.  The Receptor Tyrosine Kinase EphB2 Regulates NMDA-Dependent Synaptic Function , 2001, Neuron.

[70]  M. Dalva,et al.  Modulation of NMDA Receptor- Dependent Calcium Influx and Gene Expression Through EphB Receptors , 2001, Science.

[71]  E. Pasquale,et al.  EphB/Syndecan-2 Signaling in Dendritic Spine Morphogenesis , 2001, Neuron.

[72]  R. Huganir,et al.  Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Chad A. Cowan,et al.  The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals , 2001, Nature.

[74]  T. Südhof,et al.  Mints as Adaptors , 2000, The Journal of Biological Chemistry.

[75]  Michael E Greenberg,et al.  EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation , 2000, Cell.

[76]  G. Collingridge,et al.  PDZ Proteins Interacting with C-Terminal GluR2/3 Are Involved in a PKC-Dependent Regulation of AMPA Receptors at Hippocampal Synapses , 2000, Neuron.

[77]  R. Huganir,et al.  Cerebellar Long-Term Depression Requires PKC-Regulated Interactions between GluR2/3 and PDZ Domain–Containing Proteins , 2000, Neuron.

[78]  O. Bozdagi,et al.  Increasing Numbers of Synaptic Puncta during Late-Phase LTP N-Cadherin Is Synthesized, Recruited to Synaptic Sites, and Required for Potentiation , 2000, Neuron.

[79]  M. Schachner,et al.  Mice Deficient in the Polysialyltransferase ST8SiaIV/PST-1 Allow Discrimination of the Roles of Neural Cell Adhesion Molecule Protein and Polysialic Acid in Neural Development and Synaptic Plasticity , 2000, The Journal of Neuroscience.

[80]  Noam E Ziv,et al.  Assembly of New Individual Excitatory Synapses Time Course and Temporal Order of Synaptic Molecule Recruitment , 2000, Neuron.

[81]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[82]  T. Manabe,et al.  Loss of Cadherin-11 Adhesion Receptor Enhances Plastic Changes in Hippocampal Synapses and Modifies Behavioral Responses , 2000, Molecular and Cellular Neuroscience.

[83]  D. Muller,et al.  Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Melitta Schachner,et al.  Synaptic Strength as a Function of Post- versus Presynaptic Expression of the Neural Cell Adhesion Molecule NCAM , 2000, Neuron.

[85]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[86]  L. Shapiro,et al.  Functional Cis-Heterodimers of N- and R-Cadherins , 2000, The Journal of cell biology.

[87]  David R. Colman,et al.  Molecular Modification of N-Cadherin in Response to Synaptic Activity , 2000, Neuron.

[88]  J. Deisenhofer,et al.  Regulation of LNS Domain Function by Alternative Splicing: The Structure of the Ligand-Binding Domain of Neurexin Iβ , 1999, Cell.

[89]  P. Worley,et al.  Arcadlin Is a Neural Activity-regulated Cadherin Involved in Long Term Potentiation* , 1999, The Journal of Biological Chemistry.

[90]  M. Chesselet,et al.  Synaptogenesis and ultrastructural localization of the polysialylated neural cell adhesion molecule in the developing striatum , 1999, The Journal of comparative neurology.

[91]  I. Ethell,et al.  Cell Surface Heparan Sulfate Proteoglycan Syndecan-2 Induces the Maturation of Dendritic Spines in Rat Hippocampal Neurons , 1999, The Journal of Cell Biology.

[92]  T. Südhof,et al.  Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[93]  C. Hovens,et al.  The Junction-associated Protein AF-6 Interacts and Clusters with Specific Eph Receptor Tyrosine Kinases at Specialized Sites of Cell–Cell Contact in the Brain , 1999, The Journal of cell biology.

[94]  R. Huganir,et al.  PDZ Proteins Bind, Cluster, and Synaptically Colocalize with Eph Receptors and Their Ephrin Ligands , 1998, Neuron.

[95]  G. Lynch,et al.  Activation of NMDA receptors stimulates extracellular proteolysis of cell adhesion molecules in hippocampus , 1998, Brain Research.

[96]  M. Krug,et al.  Increase in proportion of hippocampal spine synapses expressing neural cell adhesion molecule NCAM180 following long-term potentiation. , 1998, Journal of neurobiology.

[97]  A. Carleton,et al.  Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[98]  T. Südhof,et al.  A Tripartite Protein Complex with the Potential to Couple Synaptic Vesicle Exocytosis to Cell Adhesion in Brain , 1998, Cell.

[99]  U. Frey,et al.  Deficits in memory tasks of mice with CREB mutations depend on gene dosage. , 1998, Learning & memory.

[100]  Chou P Hung,et al.  A Role for the Cadherin Family of Cell Adhesion Molecules in Hippocampal Long-Term Potentiation , 1998, Neuron.

[101]  G. Edelman,et al.  Allosteric modulation of AMPA-type glutamate receptors increases activity of the promoter for the neural cell adhesion molecule, N-CAM. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  M. Sheng,et al.  Heterogeneity in the Molecular Composition of Excitatory Postsynaptic Sites during Development of Hippocampal Neurons in Culture , 1998, The Journal of Neuroscience.

[103]  A. Represa,et al.  NCAM Is Essential for Axonal Growth and Fasciculation in the Hippocampus , 1997, Molecular and Cellular Neuroscience.

[104]  V. Teichberg,et al.  Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin , 1997, Neuroscience Letters.

[105]  T. Südhof,et al.  Binding Properties of Neuroligin 1 and Neurexin 1β Reveal Function as Heterophilic Cell Adhesion Molecules* , 1997, The Journal of Biological Chemistry.

[106]  T. Südhof,et al.  Binding of neuroligins to PSD-95. , 1997, Science.

[107]  E. Schuman,et al.  Neurotrophins and Time: Different Roles for TrkB Signaling in Hippocampal Long-Term Potentiation , 1997, Neuron.

[108]  A. Lustig,et al.  Calcium binding and homoassociation of E-cadherin domains. , 1997, Biochemistry.

[109]  P. Maness,et al.  NCAM140 Interacts with the Focal Adhesion Kinase p125fak and the SRC-related Tyrosine Kinase p59fyn* , 1997, The Journal of Biological Chemistry.

[110]  M. Schachner,et al.  The effect of continuous intraventricular infusion of L1 and NCAM antibodies on spatial learning in rats , 1996, Behavioural Brain Research.

[111]  M. Takeichi,et al.  The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones , 1996, The Journal of cell biology.

[112]  U. Rutishauser,et al.  Polysialic acid and the regulation of cell interactions. , 1996, Current opinion in cell biology.

[113]  N. Toni,et al.  PSA–NCAM Is Required for Activity-Induced Synaptic Plasticity , 1996, Neuron.

[114]  D. Colman,et al.  A Model for Central Synaptic Junctional Complex Formation Based on the Differential Adhesive Specificities of the Cadherins , 1996, Neuron.

[115]  A. Artola,et al.  The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long‐term potentiation , 1996, Journal of neuroscience research.

[116]  A. Flenniken,et al.  Eph Receptors and Ligands Comprise Two Major Specificity Subclasses and Are Reciprocally Compartmentalized during Embryogenesis , 1996, Neuron.

[117]  T. Südhof,et al.  CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[118]  P. Bjorkman,et al.  The (Greek) Key to Structures of Neural Adhesion Molecules , 1996, Neuron.

[119]  R. Nicoll,et al.  Contrasting properties of two forms of long-term potentiation in the hippocampus , 1995, Nature.

[120]  Marc G. Weisskopf,et al.  Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses , 1995, Nature.

[121]  M. Yamagata,et al.  Lamina-specific expression of adhesion molecules in developing chick optic tectum , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[122]  W. Nelson,et al.  Genetic and biochemical dissection of protein linkages in the cadherin-catenin complex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[123]  T. Südhof,et al.  Neuroligin 1: A splice site-specific ligand for β-neurexins , 1995, Cell.

[124]  R. Mummery,et al.  N‐Cadherin Is a Major Glycoprotein Component of Isolated Rat Forebrain Postsynaptic Densities , 1995, Journal of neurochemistry.

[125]  H. Jahnsen,et al.  NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1 , 1995, Brain Research.

[126]  T. Südhof,et al.  Cartography of neurexins: More than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons , 1995, Neuron.

[127]  A. Lüthi,et al.  Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM , 1994, Nature.

[128]  G. Rougon,et al.  Activity‐dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells. , 1994, The EMBO journal.

[129]  K. Rajewsky,et al.  Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning , 1994, Nature.

[130]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[131]  T. Südhof,et al.  Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[132]  M. Kennedy,et al.  The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein , 1992, Neuron.

[133]  C. Regan,et al.  Intraventricular Infusions of Anti‐Neural Cell Adhesion Molecules in a Discrete Posttraining Period Impair Consolidation of a Passive Avoidance Response in the Rat , 1992, Journal of neurochemistry.

[134]  T. Südhof,et al.  Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. , 1992, Science.

[135]  E. Kandel,et al.  Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. , 1992, Science.

[136]  E R Kandel,et al.  Serotonin-mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. , 1992, Science.

[137]  R M Pitkin,et al.  An embarrassment of riches. , 1989, Obstetrics and gynecology.

[138]  C. Goridis,et al.  Occurrence of α2–8 linked polysialosyl units in a neural cell adhesion molecule , 1983 .

[139]  S. Clarke,et al.  Textbook of Neural Repair and Rehabilitation: Functional plasticity in CNS system , 2006 .

[140]  Tiffany Lyle,et al.  Modulation of NMDA Receptor-Dependent Calcium Influx and Gene Expression Through EphB Receptors , 2005 .

[141]  T. Sudhof,et al.  Neurexin IlIa: Extensive alternative splicing generates membrane-bound and soluble forms , 2005 .

[142]  S. Jamain,et al.  Neuroligin 2 is exclusively localized to inhibitory synapses. , 2004, European journal of cell biology.

[143]  M. Frotscher,et al.  Hippocampal plasticity requires postsynaptic ephrinBs , 2004, Nature Neuroscience.

[144]  L. Parada,et al.  mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system , 2003, Journal of neuroscience research.

[145]  J. Deisenhofer,et al.  The structure of the ligand-binding domain of neurexin Ibeta: regulation of LNS domain function by alternative splicing. , 1999, Cell.

[146]  T. Südhof,et al.  Neurexins: three genes and 1001 products. , 1998, Trends in genetics : TIG.

[147]  M. Takeichi Morphogenetic roles of classic cadherins. , 1995, Current opinion in cell biology.