The practical application of 2D inversion to marine controlled-source electromagnetic data

An algorithm is presented for the inversion of marine controlled-source electromagnetic (CSEM) data that uses a 2D finite difference (FD) forward driver. This code is demonstrated by inverting a CSEM data set collected at Hydrate Ridge, Oregon, consisting of 25 seafloor sites recording a 5-Hz transmission frequency. The sites are located across a bathymetric high, with variations in water depth of ≈300 m along the 16-km profile. To model this complex seafloor bathymetry accurately, the FD grid was designed by careful benchmarking using a different 2D finite element (FE) forward code. A comparison of the FE and FD forward model solutions verifies that no features in the inversion are due to inaccuracies of the FD grid. The inversion includes the local seawater conductivity–depth profile as recorded by the transmitter’s conductivity–temperature-depth gauge, because seawater conductivity is known to have a significant effect on the CSEM responses. An apparent resistivity pseudosection of the CSEM data resemb...

[1]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[2]  Aria Abubakar,et al.  2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .

[3]  Gregory F. Moore,et al.  Temporal and spatial evolution of a gas hydrate-bearing accretionary ridge on the Oregon continental margin , 1999 .

[4]  C. S. Cox,et al.  Marine controlled-source electromagnetic sounding. 2. The PEGASUS experiment , 1996 .

[5]  K. Weitemeyer,et al.  Marine Electromagnetic Methods for Gas Hydrate Characterization , 2008 .

[6]  Tage Røsten,et al.  A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media , 2008 .

[7]  Gerald W. Hohmann Numerical Modeling For Electrical Methods , 1982 .

[8]  K. Yamane,et al.  Marine controlled-source electromagnetic sounding , 2011 .

[9]  Joseph B. Keller,et al.  A Theorem on the Conductivity of a Composite Medium , 1964 .

[10]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[11]  N. Bangs,et al.  3-D seismic imaging of an active margin hydrate system, Oregon continental margin : report of cruise TTN 112 R/V Thomas Thompson, June 19 - July 3, 2000 , 2001 .

[12]  Mikhail Boulaenko,et al.  The offshore EM challenge , 2005 .

[13]  J. Coggon Electromagnetic and electrical modeling by the finite element method , 1971 .

[14]  Gerald W. Hohmann,et al.  Topographic effects in resistivity and induced-polarization surveys , 1980 .

[15]  A. Abubakar,et al.  Practical Implications of Nonlinear Inversion For Cross-well Electromagnetic Data Collected In Cased-wells , 2008 .

[16]  Aria Abubakar,et al.  A Closed-Form Expression of the Electromagnetic Tensor Green's Functions for a Homogeneous TI-Anisotropic Medium , 2006, IEEE Geoscience and Remote Sensing Letters.

[17]  C. S. Cox,et al.  Controlled-source electromagnetic sounding of the oceanic lithosphere , 1986, Nature.

[18]  Matthew N. O. Sadiku,et al.  Numerical Techniques in Electromagnetics , 2000 .

[19]  R. Near-surface and Topographic Distortions in Electromagnetic Induction , 2005 .

[20]  M. Sadiku Numerical Techniques in Electromagnetics , 2000 .

[21]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[22]  Svein Ellingsrud,et al.  The Meter Reader—Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola , 2002 .

[23]  Steven Constable,et al.  Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled‐source electromagnetic sounding , 2001 .

[24]  Leonard J. Srnka,et al.  Special Section — Marine Controlled-Source Electromagnetic Methods An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration , 2007 .

[25]  R. N. Edwards,et al.  The Assessment of Marine Gas Hydrates Through Electrical Remote Sounding: Hydrate Without a BSR? , 2000 .

[26]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[27]  Lucy MacGregor,et al.  Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas , 2002 .

[28]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[29]  Steven Constable,et al.  Marine controlled‐source electromagnetic sounding: 1. Modeling and experimental design , 1996 .

[30]  M. Haeckel,et al.  Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: Results from Opouawe Bank, Hikurangi Margin, New Zealand , 2010 .

[31]  EM MODELLING USING SURFACE INTEGRAL EQUATIONS , 1988 .

[32]  A. Abubakar,et al.  A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .

[33]  Alan D. Chave,et al.  Electromagnetic induction by a finite electric dipole source over a 2-D earth , 1993 .

[34]  Steven Constable,et al.  2D marine controlled-source electromagnetic modeling: Part 2 — The effect of bathymetry , 2007 .

[35]  Steven Constable,et al.  The RAMESSES experiment—III. Controlled-source electromagnetic sounding of the Reykjanes Ridge at 57°45′N , 1998 .

[36]  Kerry Key,et al.  1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers , 2009 .

[37]  Alan D. Chave,et al.  Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. Forward problem and model study , 1982 .

[38]  Kerry Key,et al.  2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm , 2007 .

[39]  Aria Abubakar,et al.  An integral equation approach for 2.5-dimensional forward and inverse electromagnetic scattering , 2006 .

[40]  Y. Mitsuhata 2-D electromagnetic modeling by finite‐element method with a dipole source and topography , 2000 .

[41]  D. Oldenburg,et al.  Subspace inversion of electromagnetic data: application to mid‐ocean‐ridge exploration , 1995 .

[42]  Kerry Key,et al.  Mapping offshore sedimentary structure using electromagnetic methods and terrain effects in marine magnetotelluric data , 2009 .

[43]  Rob L. Evans,et al.  On the electrical nature of the axial melt zone at 13° N on the East Pacific Rise , 1994 .

[44]  Michael Commer,et al.  Massively parallel electrical-conductivity imaging of hydrocarbons using the IBM Blue Gene/L supercomputer , 2008, IBM J. Res. Dev..

[45]  Gerald W. Hohmann,et al.  Integral equation solution for the transient electromagnetic response of a three-dimensional body in a conductive half-space , 1985 .

[46]  Kerry Key,et al.  First results from a marine controlled‐source electromagnetic survey to detect gas hydrates offshore Oregon , 2006 .

[47]  R. N. Edwards,et al.  Marine gas hydrate electromagnetic signatures in Cascadia and their correlation with seismic blank zones , 2005 .

[48]  G. W. Hohmann,et al.  An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions , 1981 .

[49]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .