An energy-consistent dispersive shallow-water model

The flow of inviscid liquid in a shallow layer with free surface is revisited in the framework of the Boussinesq approximation. The unnecessary approximations connected with the moving frame are removed and a Boussinesq model is derived which is Galilean invariant to the leading asymptotic order. The Hamiltonian structure of the new model is demonstrated. The conservation and/or balance laws for wave mass, energy and wave momentum (pseudo-momentum) are derived. A new localized solution is obtained analytically and compared to the classical Boussinesq sech. Numerical simulation of the collision of two solitary waves is conducted and the impact of Galilean invariance on phase shift is discussed.

[1]  M. Wadati,et al.  A Soliton and Two Solitons in an Exponential Lattice and Related Equations , 1973 .

[2]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[3]  D. Diers,et al.  On waves... , 1992, Image--the journal of nursing scholarship.

[4]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  D. Peregrine Calculations of the development of an undular bore , 1966, Journal of Fluid Mechanics.

[6]  C. Christov,et al.  Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[8]  Solitary waves on nonlinear elastic rods. I , 1984 .

[9]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[10]  G. Maugin Applications of an energy-momentum tensor in nonlinear elastodynamics : Pseudomomentum and eshelby stress in solitonic elastic systems , 1992 .

[11]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[12]  Manuel G. Velarde,et al.  INELASTIC INTERACTION OF BOUSSINESQ SOLITONS , 1994 .

[13]  J. Francis Tides and Waves , 1969, Nature.

[14]  Morikazu Toda,et al.  Wave Propagation in Anharmonic Lattices , 1967 .

[15]  C. Christov,et al.  Nonlinear Duality Between Elastic Waves and Quasi-particles , 2002 .